skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Does plant community plasticity mediate microbial homeostasis?
Abstract Microbial homeostasis—constant microbial element ratios along resource gradients—is a core ecological tenet, yet not all systems display homeostasis. We suggest investigations of homeostasis mechanisms must also consider plant–microbial interactions. Specifically, we hypothesized that ecosystems with strong plant community plasticity to changing resources will have homeostatic microbial communities, with less microbial resource cost, because plants reduce variance in resource stoichiometry. Using long‐term nutrient additions in two ecosystems with differing plant response, we fail to support our hypothesis because although homeostasis appears stronger in the system with stronger plant response, microbial mechanisms were also stronger. However, our conclusions were undermined by high heterogeneity in resources, which may be common in ecosystem‐level studies, and methodological assumptions may be exacerbated by shifting plant communities. We propose our study as a starting point for further ecosystem‐scale investigations, with higher replication to address microbial and soil variability, and improved insight into microbial assimilable resources.  more » « less
Award ID(s):
1637459
PAR ID:
10456613
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
10
Issue:
12
ISSN:
2045-7758
Page Range / eLocation ID:
p. 5251-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Global changes such as increased drought and atmospheric nitrogen deposition perturb both the microbial and plant communities that mediate terrestrial ecosystem functioning. However, few studies consider how microbial responses to global changes may be influenced by interactions with plant communities. To begin to address the role of microbial–plant interactions, we tested the hypothesis that the response of microbial communities to global change depends on the plant community. We characterized bacterial and fungal communities from 395 plant litter samples taken from the Loma Ridge Global Change Experiment, a decade-long global change experiment in Southern California that manipulates rainfall and nitrogen levels across two adjacent ecosystems, a grassland and a coastal sage scrubland. The differences in bacterial and fungal composition between ecosystems paralleled distinctions in plant community composition. In addition to the direct main effects, the global change treatments altered microbial composition in an ecosystem-dependent manner, in support of our hypothesis. The interaction between the drought treatment and ecosystem explained nearly 5% of the variation in bacterial community composition, similar to the variation explained by the ecosystem-independent effects of drought. Unexpectedly, we found that the main effect of drought was approximately four times as strong on bacterial composition as that of nitrogen addition, which did not alter fungal or plant composition. Overall, the findings underscore the importance of considering plant–microbe interactions when considering the transferability of the results of global change experiments across ecosystems. 
    more » « less
  2. Cycles of nutrients (N, P, etc.) and resources (C) are a defining emergent feature of ecosystems. Cycling plays a critical role in determining ecosystem structure at all scales, from microbial communities to the entire biosphere. Stable cycles are essential for ecosystem persistence because they allow resources and nutrients to be regenerated. Therefore, a central problem in ecology is understanding how ecosystems are organized to sustain robust cycles. Addressing this problem quantitatively has proved challenging because of the difficulties associated with manipulating ecosystem structure while measuring cycling. We address this problem using closed microbial ecosystems (CES), hermetically sealed microbial consortia provided with only light. We develop a technique for quantifying carbon cycling in hermetically sealed microbial communities and show that CES composed of an alga and diverse bacterial consortia self-organize to robustly cycle carbon for months. Comparing replicates of diverse CES, we find that carbon cycling does not depend strongly on the taxonomy of the bacteria present. Moreover, despite strong taxonomic differences, self-organized CES exhibit a conserved set of metabolic capabilities. Therefore, an emergent carbon cycle enforces metabolic but not taxonomic constraints on ecosystem organization. Our study helps establish closed microbial communities as model ecosystems to study emergent function and persistence in replicate systems while controlling community composition and the environment. 
    more » « less
  3. IntroductionThe 1980 eruption of Mount St. Helens had devastating effects above and belowground in forested montane ecosystems, including the burial and destruction of soil microbes. Soil microbial propagules and legacies in recovering ecosystems are important for determining post-disturbance successional trajectories. Soil microorganisms regulate nutrient cycling, interact with many other organisms, and therefore may support successional pathways and complementary ecosystem functions, even in harsh conditions. Historic forest management methods, such as old-growth and clearcut regimes, and locations of historic short-term gopher enclosures (Thomomys talpoides), to evaluate community response to forest management practices and to examine vectors for dispersing microbial consortia to the surface of the volcanic landscape. These biotic interactions may have primed ecological succession in the volcanic landscape, specifically Bear Meadow and the Pumice Plain, by creating microsite conditions conducive to primary succession and plant establishment. Methods and resultsUsing molecular techniques, we examined bacterial, fungal, and AMF communities to determine how these variables affected microbial communities and soil properties. We found that bacterial/archaeal 16S, fungal ITS2, and AMF SSU community composition varied among forestry practices and across sites with long-term lupine plots and gopher enclosures. The findings also related to detected differences in C and N concentrations and ratios in soil from our study sites. Fungal communities from previously clearcut locations were less diverse than in gopher plots within the Pumice Plain. Yet, clearcut meadows harbored fewer ancestral AM fungal taxa than were found within the old-growth forest. DiscussionBy investigating both forestry practices and mammals in microbial dispersal, we evaluated how these interactions may have promoted revegetation and ecological succession within the Pumice Plains of Mount St. Helens. In addition to providing evidence about how dispersal vectors and forest structure influence post-eruption soil microbiomes, this project also informs research and management communities about belowground processes and microbial functional traits in facilitating succession and ecosystem function. 
    more » « less
  4. Abstract Ecosystem functions and services are under threat from anthropogenic global change at a planetary scale. Microorganisms are the dominant drivers of nearly all ecosystem functions and therefore ecosystem-scale responses are dependent on responses of resident microbial communities. However, the specific characteristics of microbial communities that contribute to ecosystem stability under anthropogenic stress are unknown. We evaluated bacterial drivers of ecosystem stability by generating wide experimental gradients of bacterial diversity in soils, applying stress to the soils, and measuring responses of several microbial-mediated ecosystem processes, including C and N cycling rates and soil enzyme activities. Some processes (e.g., C mineralization) exhibited positive correlations with bacterial diversity and losses of diversity resulted in reduced stability of nearly all processes. However, comprehensive evaluation of all potential bacterial drivers of the processes revealed that bacterial α diversity per se was never among the most important predictors of ecosystem functions. Instead, key predictors included total microbial biomass, 16S gene abundance, bacterial ASV membership, and abundances of specific prokaryotic taxa and functional groups (e.g., nitrifying taxa). These results suggest that bacterial α diversity may be a useful indicator of soil ecosystem function and stability, but that other characteristics of bacterial communities are stronger statistical predictors of ecosystem function and better reflect the biological mechanisms by which microbial communities influence ecosystems. Overall, our results provide insight into the role of microorganisms in supporting ecosystem function and stability by identifying specific characteristics of bacterial communities that are critical for understanding and predicting ecosystem responses to global change. 
    more » « less
  5. Abstract Consumers play a critical role in mediating plant and ecosystem responses to abiotic stress, yet their influence on belowground processes under changing environmental conditions remains underexplored. Insect consumers are vital components of grassland ecosystems that can shape ecosystem function and stability by mitigating how plant and microbial communities respond to abiotic stress, like drought. This study investigates how small‐bodied consumers influence the magnitude and stability of grassland belowground functions across gradients of abiotic stress. We conducted a fully factorial field experiment manipulating consumer presence and induced drought over a growing season. Our results reveal that the presence of consumers stabilizes bacterial biomass and microbial activity across variable soil moisture conditions. Interestingly, this consumer‐induced increase in ecosystem stability was driven by a destabilization of microbial communities, as indicated by increased variability in bacterial community composition and abundance. Consumer presence also shifted soil bacterial community composition and richness, while fungal communities were less affected. Combined, our results highlight another important dimension of ecosystem stability: community responsiveness and rapid adaptability. Additionally, our findings underscore the critical role of consumers in maintaining belowground ecosystem stability and highlight the need to consider trophic interactions when predicting the impacts of global change on grassland ecosystems. 
    more » « less