On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian‐Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical
The polar
- Award ID(s):
- 1922930
- NSF-PAR ID:
- 10456618
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 17
- Issue:
- 11
- ISSN:
- 1542-7390
- Page Range / eLocation ID:
- p. 1618-1626
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract E ×B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020,https://doi.org/10.1029/2020JA027981 ). Interestingly, we observed that a double‐humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020,https://doi.org/10.1029/2020JA027981 ) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym‐H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm's MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian‐Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian‐Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian‐Australian sector. -
Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,
https://doi.org/10.1029/2011GL048099 ; Lu et al., 2011,https://doi.org/10.1029/2010JA016141 ; Pu et al., 2019,https://doi.org/10.1029/2019GL082743 ; Pu et al., 2020,https://doi.org/10.1029/2020GL089427 ), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154 ; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627 ; Wada et al., 2020,https://doi.org/10.1029/2019JD031730 ), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. -
Abstract We present modeling results of tube and knot (T&K) dynamics accompanying thermospheric Kelvin Helmholtz Instabilities (KHI) in an event captured by the 2018 Super Soaker campaign (R. L. Mesquita et al., 2020,
https://doi.org/10.1029/2020JA027972 ). Chemical tracers released by a rocketsonde on 26 January 2018 showed coherent KHI in the lower thermosphere that rapidly deteriorated within 45–90 s. Using wind and temperature data from the event, we conducted high resolution direct numerical simulations (DNS) employing both wide and narrow spanwise domains to facilitate (wide domain case) and prohibit (narrow domain case) the axial deformation of KH billows that allows tubes and knots to form. KHI T&K dynamics are shown to produce accelerated instability evolution consistent with the observations, achieving peak dissipation rates nearly two times larger and 1.8 buoyancy periods faster than axially uniform KHI generated by the same initial conditions. Rapidly evolving twist waves are revealed to drive the transition to turbulence; their evolution precludes the formation of secondary convective instabilities and secondary KHI seen to dominate the turbulence evolution in artificially constrained laboratory and simulation environments. T&K dynamics extract more kinetic energy from the background environment and yield greater irreversible energy exchange and entropy production, yet they do so with weaker mixing efficiency due to greater energy dissipation. The results suggest that enhanced mixing from thermospheric KHI T&K events could account for the discrepancy between modeled and observed mixing in the lower thermosphere (Garcia et al., 2014,https://doi.org/10.1002/2013JD021208 ; Liu, 2021,https://doi.org/10.1029/2020GL091474 ) and merits further study. -
Abstract A new version of the stochastic multiplume Jet Propulsion Laboratory Eddy‐Diffusivity/Mass‐Flux (JPL‐EDMF) parameterization which consistently couples the simplified Khairoutdinov and Kogan (2000),
https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2 , warm phase cloud microphysical parameterization with the parameterization of cloud macrophysical and subgrid scale dynamical processes is described. The new parameterization combines the EDMF approach with an assumed shape of a joint probability density function of thermodynamic and kinematic variables which provide the basis for the computation of all parameterized processes. As far as we are aware this is the first attempt to consistently couple all of these parameterized processes in the EDMF framework. This paper is part one of a two paper series. Here, the JPL‐EDMF parameterization is described and benchmark simulations of precipitating stratocumulus and cumulus convection are performed in a single‐column‐model framework. The parameterization results compare favorably to the reference large‐eddy‐simulation results. In the second part (Smalley et al., 2022,https://doi.org/10.1029/2021MS002729 ) the JPL‐EDMF parameterization is validated for a wide range of observation‐based scenarios covering the continuous transition from subtropical stratocumulus to cumulus convection derived from global reanalysis, and parameterization uncertainties are studied in detail. -
Abstract Zhang (2019,
https://doi.org/10.1002/wrcr.v54.4 ) criticizes several of the assumptions and parameter choices of the model of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420 ) and claims that, due to an inconsistency in the irrigation equation, the key findings should be interpreted with much caution. We address each of the comments and show that the conclusions of Kuil et al. (2018,https://doi.org/10.1002/2017WR021420 ) remain fully valid.