skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Scented nectar and the challenge of measuring honest signals in pollination

Nectar scents are thought to function as honest signals of reward used by pollinators, but this hypothesis has rarely been tested.

UsingPenstemon digitalis, we examined honest signalling of the nectar volatile (S)‐(+)‐linalool and pollinator responses to linalool in both field and laboratory settings. Because our previous work showed that linalool emission was associated with higher female fitness and that nectar is scented with linalool, we hypothesized that linalool was an honest signal of nectar reward. To assess honesty, we measured linalool–nectar associations including nectar volume, sugar amount, concentration and production rate for inflorescences and flowers in several populations. We also assessed whetherBombus impatiens, the main pollinator ofP. digitalisat our sites, can use linalool as a foraging signal. We supplemented real or artificial flowers in the field and laboratory with varying linalool–nectar combinations to measure pollinator behavioural responses.

We found that an inflorescence's linalool emissions could be used to predict nectar rewards inP. digitalis, but this was driven by indirect associations with display size rather than directly advertising more profitable flowers. For flowers within inflorescences there was also no evidence for an association between signal and reward. Field tests of bumblebee behaviour were inconclusive. However, in laboratory assays, bumblebees generally used variation in linalool emissions to choose more profitable flowers, demonstrating they can detect differences in linalool emitted byP. digitalisand associate them with reward profitability. These results suggest experiments that decouple display size, scent and reward are necessary to assess whether (and when) bees prefer higher linalool emissions. Bees preferred nectars with lower linalool concentrations when linalool flavoured the nectar solution, suggesting the potential for conflicting pressures on scent emission in the field.

Synthesis. Our results highlight the challenges of assessing function for traits important to fitness and suggest that the perception of floral signalling honesty may depend on whether pollinators use inflorescences or flowers within inflorescences when making foraging decisions. We conclude that future research on honest signalling in flowering plants, as well as its connection to phenotypic selection, should explicitly define honesty, in theoretical and experimental contexts.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Date Published:
Journal Name:
Journal of Ecology
Page Range / eLocation ID:
p. 2132-2144
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Floral odours play an important role in attracting insect pollinators. Because pollinators visit flowers to obtain pollen and nectar rewards, they should prefer floral odour profiles associated with the highest‐rewarding flowers (honest signals). In previous work, bumblebees exhibited a preference for flowers from outbred over inbredMimulus guttatusplants. Pollen is the only floral reward inM. guttatus, and pollen viability (a reliable indicator of protein content) is reduced in inbred plants. Yet, differences in pollen viability did not explain the observed preferences.

    In this study, we examined the floral volatile profiles of inbred and outbredM. guttatusto identify inbreeding effects and associations between volatile compounds and the number of viable pollen grains per flower, designated “PRQ” (pollen reward quality). We also conducted pairwise choice tests withBombus impatiensto evaluate the ability of bees to discriminate between odours of rewarding and non‐rewarding flowers and to determine whether bumblebee preferences are explained by differences in the floral odours of inbred and outbred plants.

    Inbred plants exhibited reduced emission of β‐trans‐bergamotene, the second‐most abundant compound in the volatile blend of outbred plants. Furthermore, pollen and fertile anthers emitted nonadecane. Six other compounds in the floral blend were positively correlated withPRQ. There was no overlap between compounds affected by inbreeding and compounds associated withPRQ.

    Even when given prior experience foraging onM. guttatus, bumblebees did not distinguish between the floral odours of rewarding and non‐rewarding outbred plants. However, they preferred floral odours from non‐rewarding outbred plants over rewarding inbred plants. Bumblebees without prior experience of flowers preferred volatile blends with higher versus lower amounts of β‐trans‐bergamotene.

    Taken together, these results suggest that the volatile emissions ofM. guttatusprovide reliable indicators of pollen rewards (potential honest signals), but that the preference of bumblebees for outbred plants is not driven by these cues but rather by a sensory bias for β‐trans‐bergamotene. This may represent a subtle form of deceit‐pollination that allows plants to attract pollinators while minimizing investment in costly rewards.

    Aplain language summaryis available for this article.

    more » « less
  2. Abstract

    In flowering plants that produce concealed rewards, pollinator foraging preferences may select for floral advertisement traits that are correlated with rewards. To date, studies have not focused on the potential for honest signals to vary across populations, which could occur due to differences in pollinator communities or plant mating system.

    We tested for variation in honest signals across and within populations and mating systems inArabis alpina, a broadly distributed arctic‐alpine perennial herb that is visited by a variable community of insects. In a greenhouse common garden, we tested for correlations between corolla area, floral scent and nectar volume in 29 populations. In 12 field populations, we examined variation in pollen limitation and corolla area.

    Across and within populations and mating systems, larger flowers generally produced more nectar. Total scent emission was not correlated with nectar production, but two compounds—phenylacetaldehyde and benzyl alcohol—may be honest signals in some populations. Corolla area was correlated with pollen limitation only across populations.

    Our results suggest that honest signals may be similar across populations but may not result from contemporary direct selection on floral advertisements.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  3. Abstract

    Floral microbes, including bacteria and fungi, alter nectar quality, thus changing pollinator visitation. Conversely, pollinator visitation can change the floral microbial community.

    Most studies on dispersal of floral microbes have focused on bees, ants or hummingbirds, yet Lepidoptera are important pollinators.

    We asked (a) where are microbes present on the butterfly body, (b) do butterflies transfer microbes while foraging, and (c) how does butterfly foraging affect microbial abundance on different floret structures.

    The tarsi and proboscis had significantly more microbes than the thorax in wild‐caughtGlaucopsyche lygdamus(Lepidoptera: Lycaenidae) andSpeyeria mormonia(Lepidoptera: Nymphalidae).Glaucopsyche lygdamus, a smaller‐bodied species, had fewer microbes thanS. mormonia.

    As a marker for microbes, we used a bacterium (Rhodococcus fascians,near NCBI Y11196) isolated from aS. mormoniathat was foraging for nectar, and examined its dispersal byG. lygdamusandS. mormoniavisiting florets ofPyrrocoma crocea(Asteraceae). Microbial dispersal among florets correlated positively with bacterial abundance in the donor floret. Dispersal also depended on butterfly species, age, and bacterial load carried by the butterfly.

    Recipient florets had less bacteria than donor florets. The nectaries had more bacteria than the anthers or the stigmas, while anthers and stigmas did not differ from each other. There was no differential transmission among floral organs.

    Lepidoptera thus act as vectors of floral microbes. Including Lepidoptera is thus crucial to an understanding of plant–pollinator–microbe interactions. Future studies should consider the role of vectored microbes in lepidopteran ecology and fitness.

    more » « less
  4. Abstract

    Enhancing floral resources is a widely accepted strategy for supporting wild bees and promoting crop pollination. Planning effective enhancements can be informed with pollination service models, but these models should capture the behavioural and spatial dynamics of service‐providing organisms. Model predictions, and hence management recommendations, are likely to be sensitive to these dynamics.

    We used two established models of pollinator foraging to investigate whether habitat enhancement improves crop visitation; whether this effect is influenced by pollinator foraging distance and landscape pattern; and whether behavioural detail improves model predictions.

    The more detailed central place foraging model better predicted variation in bee visitation observed between habitat types, because it includes optimized trade‐offs between patch quality and distance. Both models performed well when predicting visitation rates across broader scales.

    Using real agricultural landscapes and simulating habitat enhancements, we show that additional floral resources can have diverging effects on predicted crop visitation. When only co‐flowering resources were added, optimally foraging bees concentrated in enhancements to the detriment of crop pollination. For both models, adding nesting resources increased crop visitation. Finally, the marginal effect of enhancements was greater in simple landscapes.

    Synthesis and applications. Model results help to identify the conditions under which habitat enhancements are most likely to increase pollination services in agriculture. Three design principles for pollinator habitat enhancement emerge: (a) enhancing only flowers can diminish services by distracting pollinators away from crops, (b) providing nesting resources is more likely to increase bee populations and crop visitation and (c) the benefit of enhancements will be greatest in landscapes that do not already contain abundant habitat.

    more » « less
  5. Abstract

    Human‐mediated species introductions provide real‐time experiments in how communities respond to interspecific competition. For example, managed honey beesApis mellifera(L.) have been widely introduced outside their native range and may compete with native bees for pollen and nectar. Indeed, multiple studies suggest that honey bees and native bees overlap in their use of floral resources. However, for resource overlap to negatively impact resource collection by native bees, resource availability must also decline, and few studies investigate impacts of honey bee competition on native bee floral visits and floral resource availability simultaneously.

    In this study, we investigate impacts of increasing honey bee abundance on native bee visitation patterns, pollen diets, and nectar and pollen resource availability in two Californian landscapes: wildflower plantings in the Central Valley and montane meadows in the Sierra.

    We collected data on bee visits to flowers, pollen and nectar availability, and pollen carried on bee bodies across multiple sites in the Sierra and Central Valley. We then constructed plant‐pollinator visitation networks to assess how increasing honey bee abundance impacted perceived apparent competition (PAC), a measure of niche overlap, and pollinator specialization (d'). We also compared PAC values against null expectations to address whether observed changes in niche overlap were greater or less than what we would expect given the relative abundances of interacting partners.

    We find clear evidence of exploitative competition in both ecosystems based on the following results: (1) honey bee competition increased niche overlap between honey bees and native bees, (2) increased honey bee abundance led to decreased pollen and nectar availability in flowers, and (3) native bee communities responded to competition by shifting their floral visits, with some becoming more specialized and others becoming more generalized depending on the ecosystem and bee taxon considered.

    Although native bees can adapt to honey bee competition by shifting their floral visits, the coexistence of honey bees and native bees is tenuous and will depend on floral resource availability. Preserving and augmenting floral resources is therefore essential in mitigating negative impacts of honey bee competition. In two California ecosystems, honey bee competition decreases pollen and nectar resource availability in flowers and alters native bee diets with potential implications for bee conservation and wildlands management.

    more » « less