Protein–peptide interactions play a crucial role in a variety of cellular processes. The protein–peptide complex structure is a key to understand the mechanisms underlying protein–peptide interactions and is critical for peptide therapeutic development. We present a user‐friendly protein–peptide docking server, MDockPeP. Starting from a peptide sequence and a protein receptor structure, the MDockPeP Server globally docks the all‐atom, flexible peptide to the protein receptor. The produced modes are then evaluated with a statistical potential‐based scoring function, ITScorePeP. This method was systematically validated using the peptiDB benchmarking database. At least one near‐native peptide binding mode was ranked among top 10 (or top 500) in 59% (85%) of the bound cases, and in 40.6% (71.9%) of the challenging unbound cases. The server can be used for both protein–peptide complex structure prediction and initial‐stage sampling of the protein–peptide binding modes for other docking or simulation methods. MDockPeP Server is freely available at
Peptide‐protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38‐45 included two peptide‐protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using the
- NSF-PAR ID:
- 10456904
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Proteins: Structure, Function, and Bioinformatics
- Volume:
- 88
- Issue:
- 8
- ISSN:
- 0887-3585
- Page Range / eLocation ID:
- p. 1037-1049
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
http://zougrouptoolkit.missouri.edu/mdockpep . © 2018 Wiley Periodicals, Inc. -
We present a nonredundant benchmark, coined PepPro, for testing peptide–protein docking algorithms. Currently, PepPro contains 89 nonredundant experimentally determined peptide–protein complex structures, with peptide sequence lengths ranging from 5 to 30 amino acids. The benchmark covers peptides with distinct secondary structures, including helix, partial helix, a mixture of helix and β‐sheet, β‐sheet formed through binding, β‐sheet formed through self‐folding, and coil. In addition, unbound proteins' structures are provided for 58 complexes and can be used for testing the ability of a docking algorithm handling the conformational changes of proteins during the binding process. PepPro should benefit the docking community for the development and improvement of peptide docking algorithms. The benchmark is available at
http://zoulab.dalton.missouri.edu/PepPro_benchmark . © 2019 Wiley Periodicals, Inc. -
Abstract Assemblies of racemic β‐sheet‐forming peptides have attracted attention for biomedical applications because racemic forms of peptides can self‐associate more avidly than do single enantiomers. In 1953, Pauling and Corey proposed “rippled β‐sheet” modes of H‐bond‐mediated interstrand assembly for alternating L‐ and D‐peptide strands; this structural hypothesis was complementary to their proposal of “pleated β‐sheet” assembly for L‐peptides. Although no high‐resolution structure has been reported for a rippled β‐sheet, there is strong evidence for the occurrence of rippled β‐sheets in some racemic peptide assemblies. Here we compare propensities of peptide diastereomers in aqueous solution to form a minimum increment of β‐sheet in which two antiparallel strands associate. β‐Hairpin folding is observed for homochiral peptides with aligned nonpolar side chains, but no β‐hairpin population can be detected for diastereomers in which one strand contains L residues and the other contains D residues. These observations suggest that rippled β‐sheet assemblies are stabilized by interactions between β‐sheet layers rather than interactions within these layers.
-
Abstract Disabled-2 (Dab2) is an adaptor protein that regulates the extent of platelet aggregation by two mechanisms. In the first mechanism, Dab2 intracellularly downregulates the integrin αIIbβ3receptor, converting it to a low affinity state for adhesion and aggregation processes. In the second mechanism, Dab2 is released extracellularly and interacts with the pro-aggregatory mediators, the integrin αIIbβ3receptor and sulfatides, blocking their association to fibrinogen and P-selectin, respectively. Our previous research indicated that a 35-amino acid region within Dab2, which we refer to as the sulfatide-binding peptide (SBP), contains two potential sulfatide-binding motifs represented by two consecutive polybasic regions. Using molecular docking, nuclear magnetic resonance, lipid-binding assays, and surface plasmon resonance, this work identifies the critical Dab2 residues within SBP that are responsible for sulfatide binding. Molecular docking suggested that a hydrophilic region, primarily mediated by R42, is responsible for interaction with the sulfatide headgroup, whereas the C-terminal polybasic region contributes to interactions with acyl chains. Furthermore, we demonstrated that, in Dab2 SBP, R42 significantly contributes to the inhibition of platelet P-selectin surface expression. The Dab2 SBP residues that interact with sulfatides resemble those described for sphingolipid-binding in other proteins, suggesting that sulfatide-binding proteins share common binding mechanisms.
-
ABSTRACT Protein‐protein interactions are either through direct contacts between two binding partners or mediated by structural waters. Both direct contacts and water‐mediated interactions are crucial to the formation of a protein‐protein complex. During the recent CAPRI rounds, a novel parallel searching strategy for predicting water‐mediated interactions is introduced into our protein‐protein docking method, MDockPP. Briefly, a FFT‐based docking algorithm is employed in generating putative binding modes, and an iteratively derived statistical potential‐based scoring function, ITScorePP, in conjunction with biological information is used to assess and rank the binding modes. Up to 10 binding modes are selected as the initial protein‐protein complex structures for MD simulations in explicit solvent. Water molecules near the interface are clustered based on the snapshots extracted from independent equilibrated trajectories. Then, protein‐ligand docking is employed for a parallel search for water molecules near the protein‐protein interface. The water molecules generated by ligand docking and the clustered water molecules generated by MD simulations are merged, referred to as the predicted structural water molecules. Here, we report the performance of this protocol for CAPRI rounds 28–29 and 31–35 containing 20 valid docking targets and 11 scoring targets. In the docking experiments, we predicted correct binding modes for nine targets, including one high‐accuracy, two medium‐accuracy, and six acceptable predictions. Regarding the two targets for the prediction of water‐mediated interactions, we achieved models ranked as “excellent” in accordance with the CAPRI evaluation criteria; one of these two targets is considered as a difficult target for structural water prediction. Proteins 2017; 85:424–434. © 2016 Wiley Periodicals, Inc.