Structure-based virtual screening utilizes molecular docking to explore and analyze ligand–macromolecule interactions, crucial for identifying and developing potential drug candidates. Although there is availability of several widely used docking programs, the accurate prediction of binding affinity and binding mode still presents challenges. In this study, we introduced a novel protocol that combines our in-house geometry optimization algorithm, the conjugate gradient with backtracking line search (CG-BS), which is capable of restraining and constraining rotatable torsional angles and other geometric parameters with a highly accurate machine learning potential, ANI-2x, renowned for its precise molecular energy predictions reassembling the wB97X/6-31G(d) model. By integrating this protocol with binding pose prediction using the Glide, we conducted additional structural optimization and potential energy prediction on 11 small molecule–macromolecule and 12 peptide–macromolecule systems. We observed that ANI-2x/CG-BS greatly improved the docking power, not only optimizing binding poses more effectively, particularly when the RMSD of the predicted binding pose by Glide exceeded around 5 Å, but also achieving a 26% higher success rate in identifying those native-like binding poses at the top rank compared to Glide docking. As for the scoring and ranking powers, ANI-2x/CG-BS demonstrated an enhanced performance in predicting and ranking hundreds or thousands of ligands over Glide docking. For example, Pearson’s and Spearman’s correlation coefficients remarkedly increased from 0.24 and 0.14 with Glide docking to 0.85 and 0.69, respectively, with the addition of ANI-2x/CG-BS for optimizing and ranking small molecules binding to the bacterial ribosomal aminoacyl-tRNA receptor. These results suggest that ANI-2x/CG-BS holds considerable potential for being integrated into virtual screening pipelines due to its enhanced docking performance.
more »
« less
AI ‐Assisted Protein–Peptide Complex Prediction in a Practical Setting
ABSTRACT Accurate prediction of protein–peptide complex structures plays a critical role in structure‐based drug design, including antibody design. Most peptide‐docking benchmark studies were conducted using crystal structures of protein–peptide complexes; as such, the performance of the current peptide docking tools in the practical setting is unknown. Here, the practical setting implies there are no crystal or other experimental structures for the complex, nor for the receptor and peptide. In this work, we have developed a practical docking protocol that incorporated two famous machine learning models, AlphaFold 2 for structural prediction and ANI‐2x for ab initio potential prediction, to achieve a high success rate in modeling protein–peptide complex structures. The docking protocol consists of three major stages. In the first stage, the 3D structure of the receptor is predicted by AlphaFold 2 using the monomer mode, and that of the peptide is predicted by AlphaFold 2 using the multimer mode. We found that it is essential to include the receptor information to generate a high‐quality 3D structure of the peptide. In the second stage, rigid protein–peptide docking is performed using ZDOCK software. In the last stage, the top 10 docking poses are relaxed and refined by ANI‐2x in conjunction with our in‐house geometry optimization algorithm—conjugate gradient with backtracking line search (CG‐BS). CG‐BS was developed by us to more efficiently perform geometry optimization, which takes the potential and force directly from ANI‐2x machine learning models. The docking protocol achieved a very encouraging performance for a set of 62 very challenging protein–peptide systems which had an overall success rate of 34% if only the top 1 docking poses were considered. This success rate increased to 45% if the top 3 docking poses were considered. It is emphasized that this encouraging protein–peptide docking performance was achieved without using any crystal or experimental structures.
more »
« less
- Award ID(s):
- 1955260
- PAR ID:
- 10594967
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Computational Chemistry
- Volume:
- 46
- Issue:
- 14
- ISSN:
- 0192-8651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Peptide‐protein docking is challenging due to the considerable conformational freedom of the peptide. CAPRI rounds 38‐45 included two peptide‐protein interactions, both characterized by a peptide forming an additional beta strand of a beta sheet in the receptor. Using theRosetta FlexPepDockpeptide docking protocol we generated top‐performing, high‐accuracy models for targets 134 and 135, involving an interaction between a peptide derived from L‐MAG with DLC8. In addition, we were able to generate the only medium‐accuracy models for a particularly challenging target, T121. In contrast to the classical peptide‐mediated interaction, in which receptor side chains contact both peptide backbone and side chains, beta‐sheet complementation involves a major contribution to binding by hydrogen bonds between main chain atoms. To establish how binding affinity and specificity are established in this special class of peptide‐protein interactions, we extractedPeptiDBeta, a benchmark of solved structures of different protein domains that are bound by peptides via beta‐sheet complementation, and tested our protocol for global peptide‐dockingPIPER‐FlexPepDockon this dataset. We find that the beta‐strand part of the peptide is sufficient to generate approximate and even high resolution models of many interactions, but inclusion of adjacent motif residues often provides additional information necessary to achieve high resolution model quality.more » « less
-
Abstract In computational biology, accurate prediction of phosphopeptide-protein complex structures is essential for understanding cellular functions and advancing drug discovery and personalized medicine. While AlphaFold has significantly improved protein structure prediction, it faces accuracy challenges in predicting structures of complexes involving phosphopeptides possibly due to structural variations introduced by phosphorylation in the peptide component. Our study addresses this limitation by refining AlphaFold to improve its accuracy in modeling these complex structures. We employed weighted metrics for a comprehensive evaluation across various protein families. The enhanced model notably outperforms the original AlphaFold, showing a substantial increase in the weighted average local distance difference test (lDDT) scores for peptides: from 52.74 to 76.51 in the Top 1 model and from 56.32 to 77.91 in the Top 5 model. These advancements not only deepen our understanding of the role of phosphorylation in cellular signaling but also have extensive implications for biological research and the development of innovative therapies.more » « less
-
Abstract Comparative docking is based on experimentally determined structures of protein‐protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template‐based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface‐based docking performed marginally better. The interface‐based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2‐fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure‐based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.more » « less
-
Abstract The recent breakthroughs in structure prediction, where methods such as AlphaFold demonstrated near‐atomic accuracy, herald a paradigm shift in structural biology. The 200 million high‐accuracy models released in the AlphaFold Database are expected to guide protein science in the coming decades. Partitioning these AlphaFold models into domains and assigning them to an evolutionary hierarchy provide an efficient way to gain functional insights into proteins. However, classifying such a large number of predicted structures challenges the infrastructure of current structure classifications, including our Evolutionary Classification of protein Domains (ECOD). Better computational tools are urgently needed to parse and classify domains from AlphaFold models automatically. Here we present a Domain Parser for AlphaFold Models (DPAM) that can automatically recognize globular domains from these models based on inter‐residue distances in 3D structures, predicted aligned errors, and ECOD domains found by sequence (HHsuite) and structural (Dali) similarity searches. Based on a benchmark of 18,759 AlphaFold models, we demonstrate that DPAM can recognize 98.8% of domains and assign correct boundaries for 87.5%, significantly outperforming structure‐based domain parsers and homology‐based domain assignment using ECOD domains found by HHsuite or Dali. Application of DPAM to the massive AlphaFold models will enable efficient classification of domains, providing evolutionary contexts and facilitating functional studies.more » « less
An official website of the United States government
