skip to main content


Title: Nanoscale Structural and Emission Properties within “Russian Doll”‐Type InGaN/AlGaN Quantum Wells
Abstract

Due to the increasing desire for nanoscale optoelectronic devices with green light emission capability and high efficiency, ternary III‐N‐based nanorods are extensively studied. Many efforts have been taken on the planar device configuration, which lead to unavoided defects and strains. With selective‐area molecular‐beam epitaxy, new “Russian Doll”‐type InGaN/AlGaN quantum wells (QWs) have been developed, which could largely alleviate this issue. This work combines multiple nanoscale characterization methods and k∙p theory calculations so that the crystalline structure, chemical compositions, strain effects, and light emission properties can be quantitatively correlated and understood. The 3D structure and atomic composition of these QWs are retrieved with transmission electron microscopy and atom probe tomography while their green light emission has been demonstrated with room‐temperature cathodoluminescence experiments. k∙p theory calculations, with the consideration of strain effects, are used to derive the light emission characteristics that are compared with the local measurements. Thus, the structural properties of the newly designed nanorods are quantitatively characterized and the relationship with their outstanding optical properties is described. This combined approach provides an innovative way for analyzing nano‐optical‐devices and new strategies for the structure design of light‐emitting diodes.

 
more » « less
Award ID(s):
1709207
PAR ID:
10456947
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
8
Issue:
17
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanostructured gold has attracted significant interest from materials science, chemistry, optics and photonics, and biology due to their extraordinary potential for manipulating visible and near‐infrared light through the excitation of plasmon resonances. However, gold nanostructures are rarely measured experimentally in their plasmonic properties and hardly used for high‐temperature applications because of the inherent instability in mass and shape due to the high surface energy at elevated temperatures. In this work, the first direct observation of thermally excited surface plasmons in gold nanorods at 1100 K is demonstrated. By coupling with an optical fiber in the near‐field, the thermally excited surface plasmons from gold nanorods can be converted into the propagating modes in the optical fiber and experimentally characterized in a remote manner. This fiber‐coupled technique can effectively characterize the near‐field thermoplasmonic emission from gold nanorods. A direct simulation scheme is also developed to quantitively understand the thermal emission from the array of gold nanorods. The experimental work in conjunction with the direct simulation results paves the way of using gold nanostructures as high‐temperature plasmonic nanomaterials, which has important implications in thermal energy conversion, thermal emission control, and chemical sensing.

     
    more » « less
  2. Plasmonic nanostructures with electrical connections have potential applications as new electro-optic devices due to their strong light–matter interactions. Plasmonic dimers with nanogaps between adjacent nanostructures are especially good at enhancing local electromagnetic (EM) fields at resonance for improved performance. In this study, we use optical extinction measurements and high-resolution electron microscopy imaging to investigate the thermal stability of electrically interconnected plasmonic dimers and their optical and morphological properties. Experimental measurements and finite difference time domain (FDTD) simulations are combined to characterize temperature effects on the plasmonic properties of large arrays of Au nanostructures on glass substrates. Experiments show continuous blue shifts of extinction peaks for heating up to 210°C. Microscopy measurements reveal these peak shifts are due to morphological changes that shrink nanorods and increase nanogap distances. Simulations of the nanostructures before and after heating find good agreement with experiments. Results show that plasmonic properties are maintained after thermal processing, but peak shifts need to be considered for device design.

     
    more » « less
  3. In the manufacture of semiconductor devices, cracking of heterostructures has been recognized as a major obstacle for their post-growth processing. In this work, we explore cracked GaN/AlN multi-quantum wells (MQWs) to study the influence of pressure on the recombination energy of the photoluminescence (PL) from the polar GaN QWs. We grow GaN/AlN MQWs on a GaN(0001)/sapphire template, which provides 2.4% tensile strain for epitaxial AlN. This strain relaxes through the generation and propagation of cracks, resulting in a final inhomogeneous distribution of stress throughout the film. The crack-induced strain variation investigated by micro-Raman spectroscopy and X-ray diffraction mapping revealed a correlation between the spacing of the cracks and the amount of strain between them. We have developed a 2D model that allows us to calculate the spatial variation of the in-plane strain in the GaN and AlN layers. The measured values of compressive in-plane strain in the GaN QWs vary from -0.4 % away from cracks, to -0.7 % near cracks. PL from the GaN QWs exhibits a clear correlation to the varying strain resulting in an energy shift of ∼ 140 meV. As a result, we can experimentally calculate a pressure coefficient of PL energy of ∼ -60.4 meV/GPa for the ∼ 7 nm thick polar GaN QWs. This agrees well with the previously predicted theoretical results by Kaminska et al. in 2016 [DOI: 10.1063/1.4962282], which were demonstrated to break down for such wide QWs. We will discuss this difference with respect to the reduction in both the expected point defects and extended defects resulting from not doping and growth on a GaN template, respectively. As a result, our work indicates that cracks can be utilized for investigating some fundamental material properties related to strain effects. 
    more » « less
  4. Abstract

    Germanium selenide (GeSe) is a 2D layered material with an anisotropic crystal structure analogous to black phosphorus (BP). But unlike BP, GeSe is stable under ambient conditions and therefore provides more flexibility in building practical nanoscale devices. The in‐plane anisotropic vibrational, electrical, and optical properties of layered GeSe originating from the low symmetry of its crystal structure are being explored mostly for building polarization‐sensitive optoelectronic devices. However, the nonlinear optical properties of layered GeSe have not been investigated yet. Here, the anisotropic polarization‐dependent third‐harmonic generation (THG) from exfoliated thin GeSe flakes due to the low in‐plane lattice symmetry is reported. Furthermore, it is also shown that the intensity and polarization state of TH emission can be controlled by the polarization state of pump beam. Moreover, it is demonstrated that the crystal's symmetry axes can be rapidly determined by characterizing the intensity profile of TH emission upon the excitation from radially or azimuthally polarized vector beam. The results of this study pave the way for realizing anisotropic nonlinear optical devices such as multiplexers, signal processors, and other prototypes for future on‐chip photonic circuits and optical information processing.

     
    more » « less
  5. Abstract

    2D van der Waals (vdW) materials are emerging as the next generation platform for optical and electronic devices with their wide coverage of the energy bandgaps. The strong light–matter interactions in 2D vdW layers allow for exploring novel optical and electronic phenomena such as 2D polaritons exhibiting ultrahigh field confinement, defects‐induced new quantum states, and strain‐modulated quantum confinement of 2D excitons. Far‐field optical imaging techniques are extensively used to characterize the 2D vdW materials so far, however, subdiffraction spatial resolution is required for comprehensive investigations of 2D vdW materials of which physical properties are greatly influenced by local defects and strain. This article aims to cover historical advances, fundamental principles, and distinct features of emerging near‐field optical imaging techniques: scattering‐type scanning near‐field optical microscopy, tip‐enhanced Raman spectroscopy, tip‐enhanced photoluminescence techniques, and photo‐induced force microscopy. The recent developments toward spectroscopic analysis of near‐field imaging and applications for unveiling unique properties of 2D polaritons, nanoscale defects, and mechanical strains in 2D vdW materials, are also discussed. This review article provides an understanding of emerging near‐field imaging techniques and suggests prospective applications for exploring 2D vdW materials.

     
    more » « less