skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Facile Production of Large‐Area Cell Arrays Using Surface‐Assembled Microdroplets
Abstract Techniques that enable the spatial arrangement of living cells into defined patterns are broadly applicable to tissue engineering, drug screening, and cell–cell investigations. Achieving large‐scale patterning with single‐cell resolution while minimizing cell stress/damage is, however, technically challenging using existing methods. Here, a facile and highly scalable technique for the rational design of reconfigurable arrays of cells is reported. Specifically, microdroplets of cell suspensions are assembled using stretchable surface‐chemical patterns which, following incubation, yield ordered arrays of cells. The microdroplets are generated using a microfluidic‐based aerosol spray nozzle that enables control of the volume/size of the droplets delivered to the surface. Assembly of the cell‐loaded microdroplets is achieved via mechanically induced coalescence using substrates with engineered surface‐wettability patterns based on extracellular matrices. Robust cell proliferation inside the patterned areas is demonstrated using standard culture techniques. By combining the scalability of aerosol‐based delivery and microdroplet surface assembly with user‐defined chemical patterns of controlled functionality, the technique reported here provides an innovative methodology for the scalable generation of large‐area cell arrays with flexible geometries and tunable resolution.  more » « less
Award ID(s):
1826135
PAR ID:
10456951
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
7
Issue:
15
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stem cell‐based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non‐destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping‐based machine learning analysis is reported to distinguish differentiating human adipose‐derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single‐cell resolution. The label‐free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton‐based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix‐assisted laser desorption/ionization‐mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label‐free identification of stem cell differentiation with high spatial and chemical resolution. 
    more » « less
  2. Abstract Gallium‐based liquid metals (LMs) are widely used for stretchable and reconfigurable electronics thanks to their fluidic nature and excellent conductivity. These LMs possess attractive optical properties for photonics applications as well. However, due to the high surface tension of the LMs, it is challenging to form LM nanostructures with arbitrary shapes using conventional nanofabrication techniques. As a result, LM‐based nanophotonics has not been extensively explored. Here, a simple yet effective technique is demonstrated to deterministically fabricate LM nanopatterns with high yield over a large area. This technique demonstrates for the first time the capability to fabricate LM nanophotonic structures of various precisely defined shapes and sizes using two different LMs, that is, liquid gallium and liquid eutectic gallium–indium alloy. High‐density arrays of LM nanopatterns with critical feature sizes down to ≈100 nm and inter‐pattern spacings down to ≈100 nm are achieved, corresponding to the highest resolution of any LM fabrication technique developed to date. Additionally, the LM nanopatterns demonstrate excellent long‐term stability under ambient conditions. This work paves the way toward further development of a wide range of LM nanophotonics technologies and applications. 
    more » « less
  3. Abstract Microbubbles are an important tool due to their unique mechanical, acoustic, and dynamical properties. Yet, it remains challenging to generate microbubbles quickly in a parallel, biocompatible, and controlled manner. Here, we present an opto-electrochemical method that combines precise light-based projection with low-energy electrolysis, realizing defined microbubble patterns that in turn trigger assembly processes. The size of the bubbles can be controlled from a few to over hundred micrometers with a spatial accuracy of ~2 μm. The minimum required light intensity is only ~0.1 W/cm2, several orders of magnitude lower compared to other light-enabled methods. We demonstrate the assembly of prescribed patterns of 40-nm nanocrystals, 200 nm extracellular vesicles, polymer nanospheres, and live bacteria. We show how nanosensor-bacterial-cell arrays can be formed for spectroscopic profiling of metabolites and antibiotic response of bacterial assemblies. The combination of a photoconductor with electrochemical techniques enables low-energy, low-temperature bubble generation, advantageous for large-scale, one-shot patterning of diverse particles in a biocompatible manner. The microbubble-platform is highly versatile and promises new opportunities in nanorobotics, nanomanufacturing, high-throughput bioassays, single cell omics, bioseparation, and drug screening and discovery. 
    more » « less
  4. Abstract Despite remarkable progress in the development of halide perovskite materials and devices, their integration into nanoscale optoelectronics has been hindered by a lack of control over nanoscale patterning. Owing to their tendency to degrade rapidly, perovskites suffer from chemical incompatibility with conventional lithographic processes. Here, we present an alternative, bottom-up approach for precise and scalable formation of perovskite nanocrystal arrays with deterministic control over size, number, and position. In our approach, localized growth and positioning is guided using topographical templates of controlled surface wettability through which nanoscale forces are engineered to achieve sub-lithographic resolutions. With this technique, we demonstrate deterministic arrays of CsPbBr3nanocrystals with tunable dimensions down to <50 nm and positional accuracy <50 nm. Versatile, scalable, and compatible with device integration processes, we then use our technique to demonstrate arrays of nanoscale light-emitting diodes, highlighting the new opportunities that this platform offers for perovskites’ integration into on-chip nanodevices. 
    more » « less
  5. Abstract Directed self-assembly of block copolymers (BCPs) enables nanofabrication at sub-10 nm dimensions, beyond the resolution of conventional lithography. However, directing the position, orientation, and long-range lateral order of BCP domains to produce technologically-useful patterns is a challenge. Here, we present a promising approach to direct assembly using spatial boundaries between planar, low-resolution regions on a surface with different composition. Pairs of boundaries are formed at the edges of isolated stripes on a background substrate. Vertical lamellae nucleate at and are pinned by chemical contrast at each stripe/substrate boundary, align parallel to boundaries, selectively propagate from boundaries into stripe interiors (whereas horizontal lamellae form on the background), and register to wide stripes to multiply the feature density. Ordered BCP line arrays with half-pitch of 6.4 nm are demonstrated on stripes >80 nm wide. Boundary-directed epitaxy provides an attractive path towards assembling, creating, and lithographically defining materials on sub-10 nm scales. 
    more » « less