Abstract IntroductionCoaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection. MethodsPhospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl2crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression. ResultsCoaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments. ConclusionsOur results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine.
more »
« less
Massively parallel microbubble nano-assembly
Abstract Microbubbles are an important tool due to their unique mechanical, acoustic, and dynamical properties. Yet, it remains challenging to generate microbubbles quickly in a parallel, biocompatible, and controlled manner. Here, we present an opto-electrochemical method that combines precise light-based projection with low-energy electrolysis, realizing defined microbubble patterns that in turn trigger assembly processes. The size of the bubbles can be controlled from a few to over hundred micrometers with a spatial accuracy of ~2 μm. The minimum required light intensity is only ~0.1 W/cm2, several orders of magnitude lower compared to other light-enabled methods. We demonstrate the assembly of prescribed patterns of 40-nm nanocrystals, 200 nm extracellular vesicles, polymer nanospheres, and live bacteria. We show how nanosensor-bacterial-cell arrays can be formed for spectroscopic profiling of metabolites and antibiotic response of bacterial assemblies. The combination of a photoconductor with electrochemical techniques enables low-energy, low-temperature bubble generation, advantageous for large-scale, one-shot patterning of diverse particles in a biocompatible manner. The microbubble-platform is highly versatile and promises new opportunities in nanorobotics, nanomanufacturing, high-throughput bioassays, single cell omics, bioseparation, and drug screening and discovery.
more »
« less
- PAR ID:
- 10617248
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lipid‐coated microbubbles are an important class of gene delivery vehicles activated by ultrasound to locally deliver their DNA payloads to cells. Negatively charged DNA is electrostatically loaded onto the positively charged surface of microbubbles that contain a cationic lipid shell. Characterizing the zeta potential of individual cationic microbubbles to determine a population distribution and how this is affected by DNA complexation is critical to maximize DNA loading and circulation time. Traditional zeta potential analysis provides an ensemble charge measurement for a particle population but cannot measure individual particles to determine a distribution. Here, single‐particle tracking microelectrophoresis technology is applied to measure zeta potentials of individual microbubbles synthesized with different ratios of 1,2‐distearoyl‐3‐trimethylammonium‐propane (DSTAP) cationic lipid as well as loaded with increasing amounts of DNA. Results show that at 0 mol% DSTAP all microbubbles are negatively charged, and at 10 mol% half are positive. All particles are positive at 20 mol% DSTAP but the population shifts to negative values upon incubation with 0.01 pg DNA/microbubble. Analyzing zeta potential on the individual microbubble level is a powerful tool to understand DNA loading across a population of microbubbles and enables microbubble surface charge and nucleic acid loading optimization for delivery applications.more » « less
-
Piezoelectric acoustic energy harvesting within the human body has traditionally faced challenges due to insufficient energy levels for biomedical applications. Existing acoustic resonators are often much larger in size, making them impractical for microscale applications. This study investigates the use of acoustically oscillated microbubbles as energy-harvesting resonators. A comparative study was conducted to determine the energy harvested by a freestanding diaphragm and a diaphragm coupled with an oscillating microbubble. The experimental results demonstrated that incorporating a microbubble enabled the flexible piezoelectric diaphragm to harvest seven times more energy than the freestanding diaphragm. These findings were further validated using Laser Doppler Vibrometer (LDV) measurements and stress calculations. Additional experiments with a phantom tissue tank confirmed the feasibility of this technology for biomedical applications. The results indicate that acoustically resonating microbubbles are a promising design for microscale acoustic energy-harvesting resonators in implantable biomedical devices.more » « less
-
Abstract Ultrasound localization microscopy (ULM) enables deep tissue microvascular imaging by localizing and tracking intravenously injected microbubbles circulating in the bloodstream. However, conventional localization techniques require spatially isolated microbubbles, resulting in prolonged imaging time to obtain detailed microvascular maps. Here, we introduce LOcalization with Context Awareness (LOCA)-ULM, a deep learning-based microbubble simulation and localization pipeline designed to enhance localization performance in high microbubble concentrations. In silico, LOCA-ULM enhanced microbubble detection accuracy to 97.8% and reduced the missing rate to 23.8%, outperforming conventional and deep learning-based localization methods up to 17.4% in accuracy and 37.6% in missing rate reduction. In in vivo rat brain imaging, LOCA-ULM revealed dense cerebrovascular networks and spatially adjacent microvessels undetected by conventional ULM. We further demonstrate the superior localization performance of LOCA-ULM in functional ULM (fULM) where LOCA-ULM significantly increased the functional imaging sensitivity of fULM to hemodynamic responses invoked by whisker stimulations in the rat brain.more » « less
-
Abstract Stretchable supercapacitors (SCs) have attracted significant attention in developing power‐independent stretchable electronic systems due to their intrinsic energy storage function and unique mechanical properties. Most current SCs are generally limited by their low stretchability, complicated fabrication process, and insufficient performance and robustness. This study presents a facile method to fabricate arbitrary‐shaped stretchable electrodes via 4D printing of conductive composite from reduced graphene oxide, carbon nanotube, and poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate. The electrode patterns of an arbitrary shape can be deposited onto prestretched substrates by aerosol‐jet printing, then self‐organized origami (ridge) patterns are generated after releasing the substrates from holding stretchers due to the mismatched strains. The stretchable electrodes demonstrate superior mechanical robustness and stretchability without sacrificing its outstanding electrochemical performance. The symmetric SC prototype possesses a gravimetric capacitance of ≈21.7 F g−1at a current density of 0.5 A g−1and a capacitance retention of ≈85.8% from 0.5 to 5 A g−1. A SC array with arbitrary‐shaped electrodes is also fabricated and connected in series to power light‐emitting diode patterns for large‐scale applications. The proposed method paves avenues for scalable manufacturing of future energy‐storage devices with controlled extensibility and high electrochemical performance.more » « less
An official website of the United States government
