skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence of vulnerability to decision bias in expert field scientists
Summary Previous research demonstrates that domain experts, like ordinary participant populations, are vulnerable to decision bias. Here, we examine susceptibility to bias amongst expert field scientists. Field scientists operate in less predictable environments than other experts, and feedback on the consequences of their decisions is often unclear or delayed. Thus, field scientists are a population where the findings of scientific research may be particularly vulnerable to bias. In this study, susceptibility to optimism, hindsight, and framing bias was evaluated in a group of expert field geologists using descriptive decision scenarios. Experts showed susceptibility to all three biases, and susceptibility was not influenced by years of science practice. We found no evidence that participants' vulnerability to one bias was related to their vulnerability to another bias. Our findings are broadly consistent with previous research on expertise and decision bias, demonstrating that no expert, regardless their domain experience, is immune to bias.  more » « less
Award ID(s):
1734365
PAR ID:
10456967
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Applied Cognitive Psychology
Volume:
34
Issue:
5
ISSN:
0888-4080
Page Range / eLocation ID:
p. 1217-1223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Three studies (1 survey, 2 experiments) examine cognitive biases in the professional judgments of nationally-representative samples of psychologists working in legal contexts. Study 1 (N= 84) demonstrates robust evidence of the bias blind spot (Pronin, Lin, & Ross, 2002) in experts’ judgments. Psychologists rated their own susceptibility to bias in their professional work lower than their colleagues (and laypeople). As expected, they perceived bias mitigating procedures as more threatening to their own domain than outside domains, and more experience was correlated with higher perceived threat of bias mitigating procedures. Experimental studies 2 (N=118) & 3 (N=128) with randomly-selected psychologists reveals psychologists overwhelmingly engage in confirmation bias (93% with one decision opportunity in study 1, and 90%, 87%, and 82% across three decision opportunities in study 2). Cognitive reflection was negatively correlated with confirmation bias. Psychologists were also susceptible to order effects in that the order of symptoms presented affected their diagnoses–even though the same symptoms existed in the different scenarios (in opposite orders). 
    more » « less
  2. Truly collaborative scientific field data collection between human scientists and autonomous robot systems requires a shared understanding of the search objectives and tradeoffs faced when making decisions. Therefore, critical to developing intelligent robots to aid human experts is an understanding of how scientists make such decisions and how they adapt their data collection strategies when presented with new informationin situ. In this study, we examined the dynamic data collection decisions of 108 expert geoscience researchers using a simulated field scenario. Human data collection behaviors suggested two distinct objectives: an information-based objective to maximize information coverage and a discrepancy-based objective to maximize hypothesis verification. We developed a highly simplified quantitative decision model that allows the robot to predict potential human data collection locations based on the two observed human data collection objectives. Predictions from the simple model revealed a transition from information-based to discrepancy-based objective as the level of information increased. The findings will allow robotic teammates to connect experts’ dynamic science objectives with the adaptation of their sampling behaviors and, in the long term, enable the development of more cognitively compatible robotic field assistants. 
    more » « less
  3. To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain-expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  4. Poster Abstract: To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  5. In 2020, the White House released the “Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset,” wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on the graph mining and transformer models. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover ongoing research findings such as the relationship between COVID-19 and oxytocin hormone.All code, details, and pre-trained models are available at https://github.com/IlyaTyagin/AGATHA-C-GP. 
    more » « less