Haptic interfaces can be used to add sensations of touch to virtual and augmented reality experiences. Soft, flexible devices that deliver spatiotemporal patterns of touch across the body, potentially with full-body coverage, are of particular interest for a range of applications in medicine, sports and gaming. Here we report a wireless haptic interface of this type, with the ability to display vibro-tactile patterns across large areas of the skin in single units or through a wirelessly coordinated collection of them. The lightweight and flexible designs of these systems incorporate arrays of vibro-haptic actuators at a density of 0.73 actuators per square centimetre, which exceeds the two-point discrimination threshold for mechanical sensation on the skin across nearly all the regions of the body except the hands and face. A range of vibrant sensations and information content can be passed to mechanoreceptors in the skin via time-dependent patterns and amplitudes of actuation controlled through the pressure-sensitive touchscreens of smart devices, in real-time with negligible latency. We show that this technology can be used to convey navigation instructions, to translate musical tracks into tactile patterns and to support sensory replacement feedback for the control of robotic prosthetics.
more »
« less
Organic Haptics: Intersection of Materials Chemistry and Tactile Perception
Abstract The goal of the field of haptics is to create technologies that manipulate the sense of touch. In virtual and augmented reality, haptic devices are for touch what loudspeakers and RGB displays are for hearing and vision. Haptic systems that utilize micromotors or other miniaturized mechanical devices (e.g., for vibration and pneumatic actuation) produce interesting effects, but are quite far from reproducing the feeling of real materials. They are especially deficient in recapitulating surface properties: fine texture, friction, viscoelasticity, tack, and softness. The central argument of this progress report is that in order to reproduce the feel of everyday objects, molecular control must be established over the properties of materials; ultimately, such control will enable the design of materials which can change these properties in real time. Stimuli‐responsive organic materials, such as polymers and composites, are a class of materials which can change their oxidation state, conductivity, shape, and rheological properties, and thus might be useful in future haptic technologies. Moreover, the use of such materials in research on tactile perception could help elucidate the limits of human tactile sensitivity. The work described represents the beginnings of this new area of inquiry, in which the defining approach is the marriage of materials science and psychology.
more »
« less
- Award ID(s):
- 1929748
- PAR ID:
- 10457065
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 30
- Issue:
- 29
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract ROV operations are mainly performed via a traditional control kiosk and limited data feedback methods, such as the use of joysticks and camera view displays equipped on a surface vessel. This traditional setup requires significant personnel on board (POB) time and imposes high requirements for personnel training. This paper proposes a virtual reality (VR) based haptic-visual ROV teleoperation system that can substantially simplify ROV teleoperation and enhance the remote operator's situational awareness. This study leverages the recent development in Mixed Reality (MR) technologies, sensory augmentation, sensing technologies, and closed-loop control, to visualize and render complex underwater environmental data in an intuitive and immersive way. The raw sensor data will be processed with physics engine systems and rendered as a high-fidelity digital twin model in game engines. Certain features will be visualized and displayed via the VR headset, whereas others will be manifested as haptic and tactile cues via our haptic feedback systems. We applied a simulation approach to test the developed system. With our developed system, a high-fidelity subsea environment is reconstructed based on the sensor data collected from an ROV including the bathymetric, hydrodynamic, visual, and vehicle navigational measurements. Specifically, the vehicle is equipped with a navigation sensor system for real-time state estimation, an acoustic Doppler current profiler for far-field flow measurement, and a bio-inspired artificial literal-line hydrodynamic sensor system for near-field small-scale hydrodynamics. Optimized game engine rendering algorithms then visualize key environmental features as augmented user interface elements in a VR headset, such as color-coded vectors, to indicate the environmental impact on the performance and function of the ROV. In addition, augmenting environmental feedback such as hydrodynamic forces are translated into patterned haptic stimuli via a haptic suit for indicating drift-inducing flows in the near field. A pilot case study was performed to verify the feasibility and effectiveness of the system design in a series of simulated ROV operation tasks. ROVs are widely used in subsea exploration and intervention tasks, playing a critical role in offshore inspection, installation, and maintenance activities. The innovative ROV teleoperation feedback and control system will lower the barrier for ROV pilot jobs.more » « less
-
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display. By integrating pneumatic actuators within high- and low-stiffness machine-knit layers, each actuator can transmit 40 newtons in force with a bandwidth of 14.5 hertz. We demonstrate the concept with an adjustable sleeve for the forearm coupled to an untethered pneumatic control system that conveys a diverse array of social touch signals. We assessed the sleeve’s performance for discriminative and affective touch in a three-part user study and compared our results with those of prior electromagnetically actuated approaches. Haptiknit improves touch localization compared with vibrotactile stimulation and communicates social touch cues with fewer actuators than pneumatic textiles that do not invoke distributed stiffness. The Haptiknit sleeve resulted in similar recognition of social touch gestures compared to a voice-coil array but represented a more portable and comfortable form factor.more » « less
-
People use their hands for intricate tasks like playing musical instruments, employing myriad touch sensations to inform motor control. In contrast, current prosthetic hands lack comprehensive haptic feedback and exhibit rudimentary multitasking functionality. Limited research has explored the potential of upper limb amputees to feel, perceive, and respond to multiple channels of simultaneously activated haptic feedback to concurrently control the individual fingers of dexterous prosthetic hands. This study introduces a novel control architecture for three amputees and nine additional subjects to concurrently control individual fingers of an artificial hand using two channels of context-specific haptic feedback. Artificial neural networks (ANNs) recognize subjects’ electromyogram (EMG) patterns governing the artificial hand controller. ANNs also classify the directions objects slip across tactile sensors on the robotic fingertips, which are encoded via the vibration frequency of wearable vibrotactile actuators. Subjects implement control strategies with each finger simultaneously to prevent or permit slip as desired, achieving a 94.49% ± 8.79% overall success rate. Although no statistically significant difference exists between amputees’ and non-amputees’ success rates, amputees require more time to respond to simultaneous haptic feedback signals, suggesting a higher cognitive load. Nevertheless, amputees can accurately interpret multiple channels of nuanced haptic feedback to concurrently control individual robotic fingers, addressing the challenge of multitasking with dexterous prosthetic hands.more » « less
-
High-spatial-resolution wearable tactile arrays have drawn interest from both industry and research, thanks to their capacity for delivering detailed tactile sensations. However, investigations of human tactile perception with high resolution tactile displays remain limited, primarily due to the high costs of multi-channel control systems and the complex fabrication required for fingertip-sized actuators. In this work, we introduce the Soft Haptic Display (SHD) toolkit, designed to enable students and researchers from diverse technical backgrounds to explore high-density tactile feedback in extended reality (XR), robotic teleoperation, braille displays, navigation aid, MR-compatible somatosensory stimulation, and remote palpation. The toolkit provides a rapid prototyping approach and real-time wireless control for a low-cost, 4×4 soft wearable fingertip tactile display with a spatial resolution of 4 mm. We characterized the display’s performance with a maximum vertical displacement of 1.8 mm, a rise time of 0.25 second, and a maximum refresh rate of 8 Hz. All materials and code are open-sourced to foster broader human tactile perception research of high-resolution haptic displays.more » « less
An official website of the United States government
