skip to main content


Title: A wireless haptic interface for programmable patterns of touch across large areas of the skin
Haptic interfaces can be used to add sensations of touch to virtual and augmented reality experiences. Soft, flexible devices that deliver spatiotemporal patterns of touch across the body, potentially with full-body coverage, are of particular interest for a range of applications in medicine, sports and gaming. Here we report a wireless haptic interface of this type, with the ability to display vibro-tactile patterns across large areas of the skin in single units or through a wirelessly coordinated collection of them. The lightweight and flexible designs of these systems incorporate arrays of vibro-haptic actuators at a density of 0.73 actuators per square centimetre, which exceeds the two-point discrimination threshold for mechanical sensation on the skin across nearly all the regions of the body except the hands and face. A range of vibrant sensations and information content can be passed to mechanoreceptors in the skin via time-dependent patterns and amplitudes of actuation controlled through the pressure-sensitive touchscreens of smart devices, in real-time with negligible latency. We show that this technology can be used to convey navigation instructions, to translate musical tracks into tactile patterns and to support sensory replacement feedback for the control of robotic prosthetics.  more » « less
Award ID(s):
2112363
NSF-PAR ID:
10496481
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; « less
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Electronics
Volume:
5
Issue:
6
ISSN:
2520-1131
Page Range / eLocation ID:
374 to 385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a new class of haptic devices that provide haptic sensations by delivering liquid-stimulants to the user's skin; we call this chemical haptics. Upon absorbing these stimulants, which contain safe and small doses of key active ingredients, receptors in the user's skin are chemically triggered, rendering distinct haptic sensations. We identified five chemicals that can render lasting haptic sensations: tingling (sanshool), numbing (lidocaine), stinging (cinnamaldehyde), warming (capsaicin), and cooling (menthol). To enable the application of our novel approach in a variety of settings (such as VR), we engineered a self-contained wearable that can be worn anywhere on the user's skin (e.g., face, arms, legs). Implemented as a soft silicone patch, our device uses micropumps to push the liquid stimulants through channels that are open to the user's skin, enabling topical stimulants to be absorbed by the skin as they pass through. Our approach presents two unique benefits. First, it enables sensations, such as numbing, not possible with existing haptic devices. Second, our approach offers a new pathway, via the skin's chemical receptors, for achieving multiple haptic sensations using a single actuator, which would otherwise require combining multiple actuators (e.g., Peltier, vibration motors, electro-tactile stimulation). We evaluated our approach by means of two studies. In our first study, we characterized the temporal profiles of sensations elicited by each chemical. Using these insights, we designed five interactive VR experiences utilizing chemical haptics, and in our second user study, participants rated these VR experiences with chemical haptics as more immersive than without. Finally, as the first work exploring the use of chemical haptics on the skin, we offer recommendations to designers for how they may employ our approach for their interactive experiences. 
    more » « less
  2. People use their hands for intricate tasks like playing musical instruments, employing myriad touch sensations to inform motor control. In contrast, current prosthetic hands lack comprehensive haptic feedback and exhibit rudimentary multitasking functionality. Limited research has explored the potential of upper limb amputees to feel, perceive, and respond to multiple channels of simultaneously activated haptic feedback to concurrently control the individual fingers of dexterous prosthetic hands. This study introduces a novel control architecture for three amputees and nine additional subjects to concurrently control individual fingers of an artificial hand using two channels of context-specific haptic feedback. Artificial neural networks (ANNs) recognize subjects’ electromyogram (EMG) patterns governing the artificial hand controller. ANNs also classify the directions objects slip across tactile sensors on the robotic fingertips, which are encoded via the vibration frequency of wearable vibrotactile actuators. Subjects implement control strategies with each finger simultaneously to prevent or permit slip as desired, achieving a 94.49% ± 8.79% overall success rate. Although no statistically significant difference exists between amputees’ and non-amputees’ success rates, amputees require more time to respond to simultaneous haptic feedback signals, suggesting a higher cognitive load. Nevertheless, amputees can accurately interpret multiple channels of nuanced haptic feedback to concurrently control individual robotic fingers, addressing the challenge of multitasking with dexterous prosthetic hands.

     
    more » « less
  3. Saitis, C. ; Farkhatdinov, I ; Papetti, S. (Ed.)
    There are fundamental differences between the tactile and thermal sensory systems that must be accommodated when designing multisensory cutaneous displays for use in virtual or teleoperated robotic environments. In this review we highlight the marked temporal and spatial differences between the senses of cold and warmth as revealed in psychophysical experiments. Cold and warmth are distinct senses with marked differences in the time taken to respond to stimulation and in their temporal filtering processes. Such variations must be taken into account when time-varying profiles of thermal stimulation are delivered to the skin concurrent with tactile stimulation since the resulting sensations will not be perceived on the same time scale. Although it is often reported that the thermal senses are markedly inferior to the sense of touch with respect to their spatial acuity, it is also clear that there is considerable variability across the body in the accuracy with which thermal stimuli can be localized. The distal to proximal gradient in thermal acuity suggests that locations other than the palmar surface of the hand are better suited for displaying thermal cues, in contrast to the situation for tactile inputs. As was noted for temporal processes, there are differences between localizing warmth and cold stimuli, with localization being superior for cold. These properties provide benchmarks that can be used in designing thermal and multisensory displays. 
    more » « less
  4. Abstract

    Emerging virtual and augmented reality technologies can transform human activities in myriad domains, lending tangible, embodied form to digital data, services, and information. Haptic technologies will play a critical role in enabling human to touch and interact with the contents of these virtual environments. The immense variety of skilled manual tasks that humans perform in real environments are only possible through the coordination of touch sensation, perception, and movement that together comprise the haptic modality. Consequently, many research groups are vigorously investigating haptic technologies for virtual reality. A longstanding research goal in this area has been to create haptic interfaces that allow their users to touch and feel plausibly realistic virtual objects. In this progress report, the perspective on this unresolved research challenge is shared, guided by the observation that no technologies can even approximately match the capabilities of the human sense of touch. Factors that have it challenging to engineer haptic technologies for virtual reality, including the extraordinary spatial and temporal tactile acuity of the skin, and the complex interplay between continuum mechanics, haptic perception, and interaction are identified. The perspective on how these challenges may be overcome through convergent research on haptic perception, mechanics, electronics, and material technologies is presented.

     
    more » « less
  5. Despite the ubiquitous presence of tactile actuators (tactors) in mobile devices, there is a continuing need for more advanced tactors that can cover the entire frequency range of human tactile perception. Broadband tactors can increase information transmission and enrich sensory experience. The engineering challenges are multifold in that the ideal tactors should exhibit an effective bandwidth of at least 300 Hz, small form factor, robustness, power efficiency and low cost. For wearable applications, there are the additional challenges of ease of mounting and maintaining adequate skin contact during body movements. We propose an approach to interleave narrowband tactile stimuli to achieve broadband effects, taking advantage of the limited spatial resolution of the skin on the torso and limbs. Three psychophysical experiments were conducted to assess the validity of this approach. Participants performed pairwise discriminations of two broadband stimuli delivered using one or two tactors. The broadband stimuli consisted of one mid-frequency and one high-frequency component delivered through one tactor by mixing the two components, or through two tactors (one component per tactor). The first two experiments revealed extraneous cues such as localization and mutual masking of mid- and high-frequency components that were subsequently eliminated in the third experiment. Results from 12 participants confirmed that performance on pairwise comparisons was below the discrimination threshold, confirming that broadband haptic effects can be achieved through narrowband tactors placed within the skin’s two-point limen. 
    more » « less