skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Halite Precipitation From Double‐Diffusive Salt Fingers in the Dead Sea: Numerical Simulations
Abstract We employ direct numerical simulations in order to analyze the role of double‐diffusive salt fingering in halite precipitation from hypersaline lakes. Guided by field observations from the Dead Sea, which represents the only modern deep stratified lake that precipitates halite under hydrological crisis, we consider a saturated layer of warm, salty brine (epilimnion) overlying a layer of colder, less salty brine (hypolimnion) that is also saturated. The double‐diffusive instability originating in the metalimnion gives rise to an asymmetrical pattern of less salty ascending fingers, accompanied by descending salt fingers that lose heat as they propagate through the metalimnion. The net result is a strong, downward salinity flux that leads to the undersaturation of the epilimnion, while the hypolimnion becomes oversaturated and precipitates halite. These interfacial processes within deep, hypersaline water columns in warm and dry regions suggest a potential route toward the formation of thick halite layers found in the geological record.  more » « less
Award ID(s):
1803380
PAR ID:
10457100
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
5
ISSN:
0043-1397
Page Range / eLocation ID:
p. 4252-4265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The environmental setting of the Dead Sea combines several aspects whose interplay creates flow phenomena and transport processes that cannot be observed anywhere else on Earth. As a terminal lake with a rapidly declining surface level, the Dead Sea has a salinity that is close to saturation, so that the buoyancy-driven flows common in lakes are coupled to precipitation and dissolution, and large amounts of salt are being deposited year-round. The Dead Sea is the only hypersaline lake deep enough to form a thermohaline stratification during the summer, which gives rise to descending supersaturated dissolved-salt fingers that precipitate halite particles. In contrast, during the winter the entire supersaturated, well-mixed water column produces halite. The rapid lake level decline ofO(1 m/year) exposes vast areas of newly formed beach every year, which exhibit deep incisions from streams. Taken together, these phenomena provide insight into the enigmatic salt giants observed in the Earth's geological record and offer lessons regarding the stability, erosion, and protection of arid coastlines under sea level change. 
    more » « less
  2. Membrane distillation (MD) can treat high-salinity brine. However, the system’s efficiency is hindered by obstacles, including salt scaling and temperature polarization. When properly implemented, surface patterns can improve the mass and heat transfer in the boundary layer, which leads to higher MD efficiency. In this work, the performance of direct contact membrane distillation (DCMD) using Sharklet-patterned poly (vinylidene fluoride) (PVDF) membranes is investigated. Both non-patterned and patterned PVDF membranes are prepared by lithographically templated thermally induced phase separation (lt-TIPS) process with optimized conditions. Sharklet patterns on the membranes improve the DCMD performance: up to 17 % higher water flux and 35 % increased brine-side heat transfer coefficient. The scaling resistance of the membranes during DCMD is tested by both saturated CaSO4 solution and hypersaline NaCl solutions. Patterned PVDF membranes show an average of 30 % higher water flux and up to 45 % lessened flux decline over time compared with non-patterned membranes when treating high-concentration brines. Post-mortem analysis reveals that Sharklet-patterned membranes display less salt-scaling on surfaces with smaller-sized CaSO4 and NaCl crystals, maintain a relatively cleaner surface, and exhibit better retention of hydrophobicity. 
    more » « less
  3. ABSTRACT The role of freshwater inputs and salinity gradients in hypersaline basins is crucial for understanding the formation of evaporitic sequences. However, this role remains poorly understood, as it involves complex processes such as mixing across density gradients, plume dynamics and air–water interactions. This study addresses this gap by investigating how a diluted buoyant plume, formed by freshwater inflows, affects spatial halite accumulation in the Dead Sea, a modern analogue for ancient evaporitic environments. In situ measurements of halite accumulation rates were conducted along transects extending from nearshore freshwater inflows (discharging ~70 × 106m3year−1), through the diluted plume, and into regions beyond the dilution effect. These measurements were complemented by analyses of spatiotemporal limnological conditions (salinity, temperature, turbidity and halite saturation), which are influenced by wind‐wave action. The diluted plume exhibits a distinct salinity structure, with full dilution at the freshwater spring discharge and exponential decay in both horizontal and vertical directions: horizontally, it decays over ~500 m, with surface dilution extending ~2 km offshore, and vertically it decays over ~0.06 m, creating a thin, highly diluted upper layer of about 1 m thick. Consequently, halite accumulation rates increase along the transect from the freshwater inflows towards deeper areas as the dilution effect diminishes. This process is controlled by (i) the transport of supersaturated brine and halite crystals from the non‐diluted environment under the diluted plume and (ii) direct precipitation of halite when the diluted plume undergoes mechanical mixing. Persistent undersaturation in the upper diluted plume layer prevents halite precipitation and, when combined with the declining lake level, leads to the dissolution of previously deposited halite layers in deeper areas. The absence of halite near the freshwater inflow and the thickening of halite towards the depocenter are observed in early Holocene Dead Sea basin halite sequences and other global halite records. 
    more » « less
  4. Abstract Lake ecosystems, as integrators of watershed and climate stressors, are sentinels of change. However, there is an inherent time-lag between stressors and whole-lake response. Aquatic metabolism, including gross primary production (GPP) and respiration (R), of stream–lake transitional zones may bridge the time-lag of lake response to allochthonous inputs. In this study, we used high-frequency dissolved oxygen data and inverse modeling to estimate daily rates of summer epilimnetic GPP and R in a nutrient-limited oligotrophic lake at two littoral sites located near different major inflows and at a pelagic site. We examined the relative importance of stream variables in comparison to meteorological and in-lake predictors of GPP and R. One of the inflow streams was substantially warmer than the other and primarily entered the lake’s epilimnion, whereas the colder stream primarily mixed into the metalimnion or hypolimnion. Maximum GPP and R rates were 0.2–2.5 mg O 2 L −1  day −1 (9–670%) higher at littoral sites than the pelagic site. Ensemble machine learning analyses revealed that > 30% of variability in daily littoral zone GPP and R was attributable to stream depth and stream–lake transitional zone mixing metrics. The warm-stream inflow likely stimulated littoral GPP and R, while the cold-stream inflow only stimulated littoral zone GPP and R when mixing with the epilimnion. The higher GPP and R observed near inflows in our study may provide a sentinel-of-the-sentinel signal, bridging the time-lag between stream inputs and in-lake processing, enabling an earlier indication of whole-lake response to upstream stressors. 
    more » « less
  5. Abstract. The Amundsen Sea polynya hosts intense sea ice formation, but, due to the presence of relatively warm and salty modified Circumpolar Deep Water, the cold, brine-enriched water is not typically dense enough to sink to the deep ocean. A hydrographic survey of the Dotson Ice Shelf region in the Amundsen Sea using two ocean gliders identified and characterised subsurface lenses containing water with temperatures less than −1.70 °C. These lenses, located at depths between 240 to 500 m, were colder, saltier and denser than the overlying Winter Water (WW) layer. The pH of the lenses was 7.99, lower than WW by 0.02 and the dissolved inorganic carbon concentration was higher in the lenses than WW by approximately 10 µmol kg−1. The lenses were associated with a dissolved oxygen concentration greater than surrounding water at the same depth and density due to the cold temperatures increasing O2 solubility. We hypothesise that these lenses are a product of wintertime surface cooling and brine rejection in areas with intense sea ice formation. They may form in shallow regions, potentially around the Martin Peninsula and Bear Island, where intense upper ocean heat loss occurs, and then spill off into the deeper Dotson-Getz Trough to reach their neutrally-buoyant depth. This is supported by wintertime temperature and salinity observations. This study highlights the importance of shallow parts of shelf seas for generating cold dense water masses in the warm sector of Antarctica. These lenses are widespread in the region of the Dotson-Getz Trough and have the potential to sequester carbon deeper than typical in the region, alongside cooling the water impinging on the Dotson ice shelf base. 
    more » « less