skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rational Design of Soft, Thermally Conductive Composite Liquid‐Cooled Tubes for Enhanced Personal, Robotics, and Wearable Electronics Cooling
Abstract Thermoregulatory garments composed of liquid‐cooled plastic tubes have users ranging from astronauts to multiple sclerosis patients and are emerging as a flexible cooling solution for wearable electronics and high‐power robotics. Despite the plethora of applications, the current cooling systems are cumbersome to use due to their excessive size. In this work this issue is resolved by developing soft, thermally conductive silicone–aluminum composite tubes. To achieve optimal device performance, the material must be designed to balance the decrease in bulk thermal resistance and the increase in interfacial tube‐substrate resistance due to composite stiffening. Thus, to enable the rational design of such tubes, a closed form thermomechanical model that predicts cooling performance as a function of tube geometry and filler fraction is developed and experimentally validated. Predictions via this model and experiments are used to reveal how the tube's geometrical and material design can be adjusted to minimize the required length of tubing and maximize the heat extracted from a metallic surface and skin. Lastly, through a holistic analysis, this work demonstrates that besides significantly increasing overall cooling capability, the use of low‐resistance tubing can provide a multifold reduction in the cooling system size and enable novel operating modes.  more » « less
Award ID(s):
1724452
PAR ID:
10457120
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
4
Issue:
7
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Singh R.P., Chalivendra V. (Ed.)
    Thin-walled structures have been widely used in automotive and aerospace industries to improve the system crashworthiness and impact protection. However, during manufacturing, transporting and handling processes, initial geometric imperfections are inevitably introduced to the thin-walled structures, which imposes negative impacts to the mechanical performance and service life of the thin-walled structures. In this study, we have introduced structural imperfection with controlled geometry and dimension to thin-walled steel tubes and characterized the mechanical response of these empty tubes and LN-filled tubes by quasi-static compression tests. Results show, the structural imperfection reduces the energy absorption capacity of empty tubes by about 20%. As the tube is filled with LN, the structural imperfection does not affect the energy absorption capacity of LN filled tube. The enhanced imperfection resistance is attributed to the suppression of imperfection growth caused by the strong liquid-solid interaction between the LN and tube wall. These findings suggest that the LN filling material can effectively reduce the adverse impact of structural imperfection and shed light on future design of thin-walled energy absorption devices. 
    more » « less
  2. Abstract An in-rack cooling system connected to an external vapor recompression loop can be an economical solution to harness waste heat recovery in data centers. Validated subsystem-level models of the thermosyphon cooling and recompression loops (evaporator, heat exchangers, compressor, etc.) are needed to predict overall system performance and to perform design optimization based on the operating conditions. This paper specifically focuses on the model of the evaporator, which is a finned-tube heat exchanger incorporated in a thermosyphon cooling loop. The fin-pack is divided into individual segments to analyze the refrigerant and air side heat transfer characteristics. Refrigerant flow in the tubes is modeled as 1-D flow scheme with transport equations solved on a staggered grid. The air side is modeled using differential equations to represent the air temperature and humidity ratio and to predict if moisture removal will occur, in which case the airside heat transfer coefficient is suitably reduced. The louver fins are modeled as individual hexagons and are treated in conjunction with the tube walls. A segment-by-segment approach is utilized for each tube and the heat exchanger geometry is subsequently evaluated from one end to the other, with air property changes considered for each subsequent row of tubes. Model predictions of stream outlet temperature and pressure, refrigerant outlet vapor quality and heat exchanger duty show good agreement when compared against a commercial software. 
    more » « less
  3. null (Ed.)
    An in-rack cooling system connected to an external vapor recompression loop can be an economical solution to harness waste heat recovery in data centers. Validated subsystem-level models of the thermosyphon cooling and recompression loops (evaporator, heat exchangers, compressor, etc.) are needed to predict overall system performance and to perform design optimization based on the operating conditions. This paper specifically focuses on the model of the evaporator, which is a finned-tube heat exchanger incorporated in a thermosyphon cooling loop. The fin-pack is divided into individual segments to analyze the refrigerant and air side heat transfer characteristics. Refrigerant flow in the tubes is modeled as 1-D flow scheme with transport equations solved on a staggered grid. The air side is modeled using differential equations to represent the air temperature and humidity ratio and to predict if moisture removal will occur, in which case the airside heat transfer coefficient is suitably reduced. The louver fins are modeled as individual hexagons and are treated in conjunction with the tube walls. A segment-by-segment approach is utilized for each tube and the heat exchanger geometry is subsequently evaluated from one end to the other, with air property changes considered for each subsequent row of tubes. Model predictions of stream outlet temperature and pressure, refrigerant outlet vapor quality and heat exchanger duty show good agreement when compared against a commercial software. 
    more » « less
  4. Manipulating airflow is important for controlling pneumatically actuated soft robots, however, current switching techniques suffer from leakage under high pressure (>200 kPa) or require a complex fabrication process. We propose a new method for reliably and repeatably cutting off airflow by harnessing pre-loaded torsional forces applied to our tubing. The switching distance and hysteresis of our pre-twisted tubing are programmable by varying the tube length and the twisting angle. Our experiments demonstrate the use of pretwisted tubing to implement CMOS equivalent fluidic switches configured as NOT-, AND-, and OR-gates, and a distance sensor for feedback control for the oscillation of a PneuNet. Our approach of pre-loading tubes with a torsional force allows for simplicity, integrated functionality, and the capability of manipulating high-pressure, fluidic signals mainly at the cost of tubing. 
    more » « less
  5. Concentric tube robots (CTRs) consist of a set of telescoping, pre-curved tubes, whose overall shape can be actively controlled by translating and rotating the tubes with respect to each other. The majority of CTRs to date consist of piecewise constant-curvature tubes, with a straight section followed by a single constant-curvature section. Several approaches have been proposed for CTR designs that can lead to improvements in metrics such as the workspace, orientability, dexterity, and stability. Here we propose to use CTRs with multiple constant-curvature sections. We perform two simulation studies that compare the performance of the multiple constant- curvature CTRs with standard single constant-curvature tubes. We also demonstrate how using one of the proposed multiple constant-curvature designs can enable the reduction in the number of tubes needed to achieve the same performance as a standard three-tube CTR. 
    more » « less