skip to main content


Title: Thermal Performance Evaluation of Three Types of Novel End-of-Aisle Cooling Systems
Data centers house a variety of compute, storage, network IT hardware where equipment reliability is of utmost importance. Heat generated by the IT equipment can substantially reduce its service life if Tjmax, maximum temperature that the microelectronic device tolerates to guarantee reliable operation, is exceeded. Hence, data center rooms are bound to maintain continuous conditioning of the cooling medium becoming large energy consumers. The objective of this work is to introduce and evaluate a new end-of-aisle cooling design which consists of three cooling configurations. The key objectives of close-coupled cooling are to enable a controlled cooling of the IT equipment, flexible as well as modular design, and containment of hot air exhaust from the cold air. The thermal performance of the proposed solution is evaluated using CFD modeling. A computational model of a small size data center room has been developed. Larger axial fans are selected and placed at rack-level which constitute the rack-fan wall design. The model consists of 10 electronic racks each dissipating a heat load of 8kw. The room is modeled to be hot aisle containment i.e. the hot air exhaust exiting for each row is contained and directed within a specific volume. Each rack has passive IT with no server fans and the servers are cooled by means of rack fan wall. The cold aisle is separated with hot aisle by means of banks of heat exchangers placed on the either sides of the aisle containment. Based on the placement of rack fans, the design is divided to three sub designs — case 1: passive heat exchangers with rack fan walls; case 2: active heat exchangers (HXs coupled with fans) with rack fan walls; case 3: active heat exchangers (hxs coupled with fans) with no rack fans. The cooling performance is calculated based on the thermal and flow parameters obtained for all three configurations. The computational data obtained has shown that the case 1 is used only for lower system resistance IT. However, case 2 and Case 3 can handle denser IT systems. Case 3 is the design that can consume lower fan energy as well as handle denser IT systems. The paper also discusses the cooling behavior of each type of design.  more » « less
Award ID(s):
1738811
NSF-PAR ID:
10065919
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
Page Range / eLocation ID:
V001T02A015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this work is to introduce and evaluate a new end-of-aisle cooling design which consists of three cooling configurations. The key objectives of close-coupled cooling are to enable controlled cooling of information technology (IT) equipment, flexible and modular design, and the containment of hot air exhaust from the cold air. The thermal performance of the proposed solution is evaluated using computational fluid dynamics modeling. A computational model of a small size data center room has been developed. The room is modeled to be a hot aisle containment setup, i.e., the hot air exhaust exiting for each row is contained and directed within a specific volume. The cold aisle is separated from the hot aisle by means of banks of heat exchangers (HXs) placed on either side of the containment aisle. Based on the placement of rack fans, the design is divided into three sub-designs—Case 1: passive HXs with rack fan walls; Case 2: active HXs (coupled with fans) with rack fan walls; Case 3: active HXs (coupled with fans) with no rack fans. The cooling performance is calculated based on the thermal and flow parameters obtained for all three configurations. The computational data obtained has shown that the Case 1 is used only for lower system resistance IT. However, Cases 2 and 3 can handle denser IT systems. Case 3 is the design that can consume lower fan energy and handle denser IT systems. The article also discusses the cooling behavior of each type of design under cooling failure conditions with Case 2 showing better cooling redundancy compared with other two cases. 
    more » « less
  2. There are various designs for segregating hot and cold air in data centers such as cold aisle containment (CAC), hot aisle containment (HAC), and chimney exhaust rack. These containment systems have different characteristics and impose various conditions on the information technology equipment (ITE). One common issue in HAC systems is the pressure buildup inside the HAC (known as backpressure). Backpressure also can be present in CAC systems in case of airflow imbalances. Hot air recirculation, limited cooling airflow rate in servers, and reversed flow through ITE with weaker fan systems (e.g. network switches) are some known consequences of backpressure. Currently there is a lack of experimental data on the interdependency between overall performance of ITE and its internal design when a backpressure is imposed on ITE. In this paper, three commercial 2-rack unit (RU) servers with different internal designs from various generations and performance levels are tested and analyzed under various environmental conditions. Smoke tests and thermal imaging are implemented to study the airflow patterns inside the tested equipment. In addition, the impact leak of hot air into ITE on the fan speed and the power consumption of ITE is studied. Furthermore, the cause of the discrepancy between measured inlet temperatures by internal intelligent platform management interface (IPMI) and external sensors is investigated. It is found that arrangement of fans, segregation of space upstream and downstream of fans, leakage paths, location of sensors of baseboard management controller (BMC) and presence of backpressure can have a significant impact on ITE power and cooling efficiency. 
    more » « less
  3. In recent years, various airflow containment systems have been deployed in data centers to improve the cooling efficiency by minimizing the mixing of hot and cold air streams. The goal of this study is the experimental investigation of passive and active hot aisle containment (HAC) systems. Also investigated, will be the dynamic interaction between HAC and information technology equipment (ITE). In addition, various provisioning levels of HAC are studied. In this study, a chimney exhaust rack (CER) is considered as the HAC system. The rack is populated by 22 commercial 2-RU servers and one network switch. Four scenarios with and without the presence of cold and hot aisle containments are investigated and compared. The transient pressure build-up inside the rack, servers' fan speed, inlet air temperatures (IAT), IT power consumption, and CPU temperatures are monitored and operating data recorded. In addition, IAT of selected servers is measured using external temperature sensors and compared with data available via the Intelligent Platform Management Interface (IPMI). To the best of authors' knowledge, this is the first experimental study in which a HAC system is analyzed using commercial ITE in a white space. It is observed that presence of backpressure can lead to a false high IPMI IAT reading. Consequently, a cascade rise in servers' fan speed is observed, which increases the backpressure and worsen the situation. As a result, the thermal performance of ITE and power consumption of the rack are affected. Furthermore, it is shown that the backpressure can affect the accuracy of common data center efficiency metrics. 
    more » « less
  4. Most of the thermal management technologies concentrate on managing airflow to achieve the desired server inlet temperature (supply air operating set point) and not to manage/improve the amount of cool air (CFM) that each computer rack (i.e. IT servers) should receive in order to remove the produced heat. However, airflow is equally important for quantifying adequate cooling to IT equipment, but it is more challenging to obtain a uniform airflow distribution at the inlet of computer racks. Therefore, as a potential option for improving airflow distribution is to eliminate the sources of non-uniformities such as maldistribution of under-floor plenum pressure field caused by vortices. Numerous researchers focus on the adverse effects of under-floor blockages. This study focused to numerically investigate the positive impact of selectively placed obstructions (on-purpose air-directors); referred as partitions; Quantitative and qualitative analysis of underfloor plenum pressure field, perforated tiles airflow rate and racks inlet temperature with and without partitions using two Computational Fluid Dynamics (CFD) models, which were built using Future Facilities 6SigmaRoom CFD tool. First, a simple data center model was used to quantify the partitions benefits for two different systems; Hot Aisle Containment (HAC) compared to an open configuration. Second, the investigation was expanded using a physics-based experimentally validated CFD model of medium size data center (more complicated data center geometry) to compare different types of proposed partitions. Both models results showed that partition type I (partitions height of $\frac{2}{3}$ of plenum depth measured from the subfloor) eliminates the presence of vortices in the under-floor plenum and hence, more uniform pressure differential across the perforated tiles that drives more uniform airflow rates. In addition, the influence of proposed partitions on the rack inlet temperature was reported through a comparison between open versus hot aisle containment. The results showed that the partitions have a minor effect on the rack inlet temperature for the hot aisle containment system. However, the partitions significantly improve the tiles flowrate. On the other hand, for the open system, the presence of partitions has improved the tiles airflow rate, rack inlet temperature and hence eliminate the hot spots formation at computer rack inlet 
    more » « less
  5. Modern Information Technology (IT) servers are typically assumed to operate in quiescent conditions with almost zero static pressure differentials between inlet and exhaust. However, when operating in a data center containment system the IT equipment thermal status is a strong function of the non- homogenous environment of the air space, IT utilization workloads and the overall facility cooling system design. To implement a dynamic and interfaced cooling solution, the interdependencies of variabilities between the chassis, rack and room level must be determined. In this paper, the effect of positive as well as negative static pressure differential between inlet and outlet of servers on thermal performance, fan control schemes, the direction of air flow through the servers as well as fan energy consumption within a server is observed at the chassis level. In this study, a web server with internal air-flow paths segregated into two separate streams, each having dedicated fan/group of fans within the chassis, is operated over a range of static pressure differential across the server. Experiments were conducted to observe the steady-state temperatures of CPUs and fan power consumption. Furthermore, the server fan speed control scheme’s transient response to a typical peak in IT computational workload while operating at negative pressure differentials across the server is reported. The effects of the internal air flow paths within the chassis is studied through experimental testing and simulations for flow visualization. The results indicate that at higher positive differential pressures across the server, increasing server fans speeds will have minimal impact on the cooling of the system. On the contrary, at lower, negative differential pressure server fan power becomes strongly dependent on operating pressure differential. More importantly, it is shown that an imbalance of flow impedances in internal airflow paths and fan control logic can onset recirculation of exhaust air within the server. For accurate prediction of airflow in cases where negative pressure differential exists, this study proposes an extended fan performance curve instead of a regular fan performance curve to be applied as a fan boundary condition for Computational Fluid Dynamics simulations. 
    more » « less