Abstract By synthesizing recent studies employing a wide range of approaches (modern observations, paleo reconstructions, and climate model simulations), this paper provides a comprehensive review of the linkage between multidecadal Atlantic Meridional Overturning Circulation (AMOC) variability and Atlantic Multidecadal Variability (AMV) and associated climate impacts. There is strong observational and modeling evidence that multidecadal AMOC variability is a crucial driver of the observed AMV and associated climate impacts and an important source of enhanced decadal predictability and prediction skill. The AMOC‐AMV linkage is consistent with observed key elements of AMV. Furthermore, this synthesis also points to a leading role of the AMOC in a range of AMV‐related climate phenomena having enormous societal and economic implications, for example, Intertropical Convergence Zone shifts; Sahel and Indian monsoons; Atlantic hurricanes; El Niño–Southern Oscillation; Pacific Decadal Variability; North Atlantic Oscillation; climate over Europe, North America, and Asia; Arctic sea ice and surface air temperature; and hemispheric‐scale surface temperature. Paleoclimate evidence indicates that a similar linkage between multidecadal AMOC variability and AMV and many associated climate impacts may also have existed in the preindustrial era, that AMV has enhanced multidecadal power significantly above a red noise background, and that AMV is not primarily driven by external forcing. The role of the AMOC in AMV and associated climate impacts has been underestimated in most state‐of‐the‐art climate models, posing significant challenges but also great opportunities for substantial future improvements in understanding and predicting AMV and associated climate impacts.
more »
« less
An Externally Forced Decadal Rainfall Seesaw Pattern Over the Sahel and Southeast Amazon
Abstract By analyzing observations and model simulations, here we show that there exists a significant anticorrelation on interannual to multidecadal time scales between the Sahel and southeast Amazon rainfall during July‐August‐September. This rainfall seesaw, which is strongest on decadal to multidecadal scales, is due to an anomalous meridional gradient of sea surface temperatures across the tropical Atlantic that pushes the Intertropical Convergence Zone and its associated rain belt toward the anomalously warm hemisphere. Large ensemble model simulations suggest that the seesaw pattern is likely caused by decadal changes in anthropogenic and volcanic aerosols, rather than internal climate variability. Our results suggest that the recent decadal to multidecadal climate variations in and around the North Atlantic basin are largely externally forced and that projected large North Atlantic warming could lead to a wetter Sahel but drier Amazon in the future.
more »
« less
- Award ID(s):
- 1743738
- PAR ID:
- 10457215
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 2
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 923-932
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920Earth’s climate fluctuates considerably on decadal-multidecadal time scales, often causing large damages to our society and environment. These fluctuations usually result from internal dynamics, and many studies have linked them to internal climate modes in the North Atlantic and Pacific oceans. Here, we show that variations in volcanic and anthropogenic aerosols have caused in-phase, multidecadal SST variations since 1920 across all ocean basins. These forced variations resemble the Atlantic Multidecadal Oscillation (AMO) in time. Unlike the North Atlantic, where indirect and direct aerosol effects on surface solar radiation drive the multidecadal SST variations, over the tropical central and western Pacific atmospheric circulation response to aerosol forcing plays an important role, whereas aerosol-induced radiation change is small. Our new finding implies that AMO-like climate variations in Eurasia, North America, and other regions may be partly caused by the aerosol forcing, rather than being originated from the North Atlantic SST variations as previously thought.more » « less
-
Abstract Understanding internal variability of the climate system is critical when isolating internal and anthropogenically forced signals. Here, we investigate the modes of Atlantic Meridional Overturning Circulation (AMOC) variability using perturbation experiments with the Institut Pierre‐Simon Laplace's (IPSL) coupled model and compare them to Coupled Model Intercomparison Project Phase 6 (CMIP6) pre‐industrial control simulations. We identify two characteristic modes of variability—decadal‐to‐multidecadal (DMDvar) and centennial (CENvar). The former is driven largely by temperature anomalies in the subpolar North Atlantic, while the latter is driven by salinity in the western subpolar North Atlantic. The amplitude of each mode scales linearly with the meanAMOCstrength in the IPSL experiments. TheDMDvaramplitude correlates well with theAMOCmean strength across CMIP6 models, while theCENvarmode does not. These findings suggest that the strength ofDMDvardepends robustly on the North Atlantic mean state, while theCENvarmode may be model‐dependent.more » « less
-
Abstract Instrumental observations indicate that Amazon precipitation and streamflow extremes have increased during the last 40 years, possibly due to anthropogenic changes and natural variability. How unprecedented these changes might be is difficult to determine because some paleoclimatic, instrumental, and climate model simulations suggest that Amazonian precipitation and streamflow may be subject to multidecadal variability with return intervals longer than most direct observations. A new 258‐yearlong tree‐ring chronology ofCedrela odoratahas been developed in the eastern Amazon and has been used to reconstruct wet season precipitation totals from 1759–2016. Reconstructed drought extremes are associated with significant sea surface temperature anomalies over the tropical Pacific and Atlantic Oceans. Strong multidecadal variance is identified in the reconstruction that may reflect a component of natural rainfall variability relevant to forest ecosystem dynamics and suggesting that recent hydroclimate changes over the eastern Amazon may not be unprecedented over the past 258 years.more » « less
-
Abstract Winter surface air temperature (Tas) over the Barents–Kara Seas (BKS) and other Arctic regions has experienced rapid warming since the late 1990s that has been linked to the concurring cooling over Eurasia, and these multidecadal trends are attributed partly to internal variability. However, how such variability is generated is unclear. Through analyses of observations and model simulations, we show that sea ice–air two-way interactions amplify multidecadal variability in sea-ice cover, sea surface temperatures (SST) and Tas from the North Atlantic to BKS, and the Atlantic Meridional Overturning Circulation (AMOC) mainly through variations in surface fluxes. When sea ice is fixed in flux calculations, multidecadal variations are reduced substantially (by 20–50%) not only in Arctic Tas, but also in North Atlantic SST and AMOC. The results suggest that sea ice–air interactions are crucial for multidecadal climate variability in both the Arctic and North Atlantic, similar to air-sea interactions for tropical climate.more » « less
An official website of the United States government
