We measured the natural remanent magnetization (NRM) and rock magnetic properties of 57 sediment samples and 38 basalt samples from Tūranganui Knoll on the Hikurangi Plateau collected at Site U1526 during International Ocean Discovery Program Expedition 375. NRM was measured on all samples before and after either progressive alternating field or thermal demagnetization. Principal component analysis was conducted to provide estimates of the characteristic remanent magnetization direction. Rock magnetic observations include measurements on select samples of the bulk magnetic susceptibility, susceptibility versus heating for Curie temperature assessment, magnetic hysteresis, backfield for coercivity of remanence determinations, isothermal remanent magnetization, and first-order reversal curves.
more »
« less
Domain State Diagnosis in Rock Magnetism: Evaluation of Potential Alternatives to the Day Diagram
Abstract The Day diagram is used extensively in rock magnetism for domain state diagnosis. It has been shown recently to be fundamentally ambiguous for 10 sets of reasons. This ambiguity highlights the urgency for adopting suitable alternative approaches to identify the domain state of magnetic mineral components in rock magnetic studies. We evaluate 10 potential alternative approaches here and conclude that four have value for identifying data trends, but, like the Day diagram, they are affected by use of bulk parameters that compromise domain state diagnosis in complex samples. Three approaches based on remanence curve and hysteresis loop unmixing, whensupervisedby independent data to avoid nonuniqueness of solutions, provide valuable component‐specific information that can be linked by inference to domain state. Three further approaches based on first‐order reversal curve diagrams provide direct domain state diagnosis with varying effectiveness. Environmentally important high‐coercivity hematite and goethite are represented with variable effectiveness in the evaluated candidate approaches. These minerals occur predominantly in noninteracting single‐domain particle assemblages in paleomagnetic contexts, so domain state diagnosis is more critical for ferrimagnetic minerals. Treating the high‐coercivity component separately following normal rock magnetic procedures allows focus on the more vexing problem of diagnosing domain state in ferrimagnetic mineral assemblages. We suggest a move away from nondiagnostic methods based on bulk parameters and adoption of approaches that provide unambiguous component‐specific domain state identification, among which various first‐order reversal curve‐based approaches provide diagnostic information.
more »
« less
- PAR ID:
- 10457221
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 124
- Issue:
- 6
- ISSN:
- 2169-9313
- Page Range / eLocation ID:
- p. 5286-5314
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Relative changes in geomagnetic field intensity over the last 280 kyears have been recovered from the study of three marine cores from the Açores area. One core was precisely dated by oxygen isotope study and the other two records were linked to it using light reflectance analysis which allowed precise correlation. Rock magnetic analysis shows that the main magnetic mineral is magnetite with a very homogeneous grain-size distribution in the pseudo-single domain range for the three cores. Changes in the amount of magnetite do not exceed a factor of 10. Therefore, these cores appear to be suitable for relative palaeointensity determinations. Two mineral magnetic components with periodicities of 23 and 18 kyears are present in the records of bulk magnetic parameters and natural remanent magnetisation (NRM), but the power at these frequencies is not significant at the 95% level for the normalised remanence records. For each core, normalisation of the NRM using different normalising parameters yields virtually identical results. Using saturation isothermal remanent magnetisation (SIRM) as the normalising parameter, the results of the three cores were then combined into a stacked curve. Squared coherence analysis between this stacked curve and bulk mineral-magnetic parameters reveals that the 18 kyear component is still present in the record, but that the power spectrum is barely above noise level at this frequency. Some of the features of this North Atlantic record are consistent with the main characteristics already documented in other sedimentary or volcanic records. For instance, distinct periods of low intensity are observed around 40, 120, and 190 kyears, and periods of high intensity at 50 and 80 kyears. Because of the uniformity of the mineral-magnetic characteristics of the three cores, we suggest that this record may be a suitable palaeointensity reference curve for the Central North Atlantic Ocean region.more » « less
-
The Leucite Hills Volcanic Field, southwest Wyoming comprises two dozen volcanic features including necks, flows, dikes, and plugs. It has been the focus of many petrologic studies as its volcanic and shallow intrusive rocks are one of the only surficial manifestations of ultrapotassic lamproite. We build on paleomagnetic findings of Sheriff and Shive (1980) by providing further paleomagnetic data from the Boars Tusk dike and Black Rock flows. We also characterize the magnetic mineral assemblage of these lamproites. Principal component analysis of alternating field (AF) and thermal demagnetization data indicate that the dike and breccias of Boars Tusk record a reversed magnetic polarity and the Black Rock lava records a normal polarity, both consistent with previous findings. This recording is typically carried by minerals with coercivities >15 mT and susceptibility measurements indicate magnetite, maghemite, and titanomagnetite as likely magnetic carriers. AF and thermal demagnetization experiments evince secondary magnetizations held by lower coercivity grains, likely caused by lightning strikes. 40Ar/39Ar incremental heating experiments from Boars Tusk and Black Rock give plateau ages of ∼ 2500 ka and ∼ 900 ka, respectively. Recent advances in the chronology of geomagnetic field reversals and excursions during the Quaternary permit integration of the Boars Tusk dike into the lower Matuyama chron, whereas the Black Rock lavas most probably record the Kamikatsura excursion. Notably, Black Rock records high inclinations that suggest the short-lived excursion achieved a full geomagnetic reversal, something not observed at other localities recording the Kamikatsura excursion. The Leucite Hills offer further opportunities to refine the Quaternary geomagnetic instability time scale (GITS), and to improve understanding of the eruptive and geomorphic evolution of this unusual volcanism.more » « less
-
Abstract Megathrust shear zones are the main fluid transport pathways during the seismic cycle and play a key role in controlling physicochemical alteration. Defining fluid‐rock interaction in wall rocks provides evidence for unraveling the hydrogeology of shear zones and their link to active fluid circulation. We analyzed the variation in concentration, grain size and assemblages of magnetic minerals in the wall rocks of a shallow megathrust (the Sestola Vidiciatico shear zone) where no evidence of high‐frictional heating has been recorded. The Sestola Vidiciatico shear zone preserves evidence of active fluid circulation and stress‐switch during the last brittle phases of the Early to Middle Miocene subduction of the Adriatic plate beneath the frontal prism of the European plate. Magnetic properties indicate low bulk heat transfer during the seismic cycle. Changes in magnetic mineral concentrations highlight iron depletion from clay minerals and dissolution of iron‐oxides for interaction with exotic fluids during the coseismic phase. The relative distribution of Fe‐oxides and goethite suggests migration of Fe‐enriched fluids along fractures during the coseismic/postseismic phase, followed by precipitation for interaction with local fluids. Subsequent alteration and weathering of magnetic minerals, accompanied by the formation of hematite and maghemite, are related to partial oxidation during the interseismic phase. Heterogeneity in magnetic mineral distribution supports active fluid circulation during repeated seismic events and/or exhumation. Rock magnetic characterization of wall rocks in exhumed megathrust represents a promising tool to better understand the role of fluid migration and redox conditions during seismic cycles in subduction zones.more » « less
-
SUMMARY Anisotropy of remanent magnetization and magnetic susceptibility are highly sensitive and important indicators of geological processes which are largely controlled by mineralogical parameters of the ferrimagnetic fraction in rocks. To provide new physical insight into the complex interaction between magnetization structure, shape, and crystallographic relations, we here analyse ‘slice-and-view’ focused-ion-beam (FIB) nano-tomography data with micromagnetic modelling and single crystal hysteresis measurements. The data sets consist of 68 magnetite inclusions in orthopyroxene (Mg60) and 234 magnetite inclusions in plagioclase (An63) were obtained on mineral separates from the Rustenburg Layered Suite of the Bushveld Intrusive Complex, South Africa. Electron backscatter diffraction was used to determine the orientation of the magnetite inclusions relative to the crystallographic directions of their silicate hosts. Hysteresis loops were calculated using the finite-element micromagnetics code MERRILL for each particle in 20 equidistributed field directions and compared with corresponding hysteresis loops measured using a vibrating sample magnetometer (VSM) on silicate mineral separates from the same samples. In plagioclase the ratio of remanent magnetization to saturation magnetization (Mrs/Ms) for both model and measurement agree within 1.0 per cent, whereas the coercivity (Hc) of the average modelled curve is 20 mT lower than the measured value of 60 mT indicating the presence of additional sources of high coercivity in the bulk sample. The VSM hysteresis measurements of the orthopyroxene were dominated by multidomain (MD) magnetite, whereas the FIB location was chosen to avoid MD particles and thus contains only particles with diameters <500 nm that are considered to be the most important carriers of palaeomagnetic remanence. To correct for this sampling bias, measured MD hysteresis loops from synthetic and natural magnetites were combined with the average hysteresis loop from the MERRILL models of the FIB region. The result shows that while the modelled small-particle fraction only explains 6 per cent of the best fit to the measured VSM hysteresis loop, it contributes 28 per cent of the remanent magnetization. The modelled direction of maximal Mrs/Ms in plagioclase is subparallel to [001]plag, whereas Hc does not show a strong orientation dependence. The easy axis of magnetic remanence is in the direction of the magnetite population normal to (150)plag and the maximum calculated susceptibility (χ*) is parallel to [010]plag. For orthopyroxene, the maximum Mrs/Ms, maximum χ* and the easy axis of remanence is strongly correlated to the elongation axes of magnetite in the [001]opx direction. The maximum Hc is oriented along [100]opx and parallel to the minimum χ*, which reflects larger vortex nucleation fields when the applied field direction approaches the short axis. The maximum Hc is therefore orthogonal to the maximum Mrs/Ms, controlled by axis-aligned metastable single-domain states at zero field. The results emphasize that the nature of anisotropy in natural magnetite does not just depend on the particle orientations, but on the presence of different stable and metastable domain states, and the mechanism of magnetic switching between them. Magnetic modelling of natural magnetic particles is therefore a vital method to extract and process anisotropic hysteresis parameters directly from the primary remanence carriers.more » « less
An official website of the United States government
