Herein, the experimental observation of micrometer‐scale magnetic skyrmions at room temperature in several Pt/Co‐based thin film heterostructures designed to possess low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii–Moriya interaction (iDMI) is reported. It is found both experimentally and by micromagnetic and analytic modeling that a low exchange stiffness and modest iDMI eliminates the energetic penalty associated with forming domain walls in thin films. When the domain wall energy density approaches negative values, the remanent morphology transitions from a uniform state to labyrinthine stripes. A low exchange stiffness, indicated by a sub‐400 K Curie temperature, is achieved in Pt/Co, Pt/Co/Ni, and Pt/Co/Ni/Re structures by reducing the Co thickness to the ultrathin limit (<0.3 nm). Similar effects occur in thicker Pt/Co/Ni
Magnetic skyrmions are topologically protected spin textures that are being investigated for their potential use in next generation magnetic storage devices. Here, magnetic skyrmions and other magnetic phases in Fe1−
- NSF-PAR ID:
- 10457247
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 29
- Issue:
- 12
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x Cu1−x structures when the Ni layer is alloyed with Cu. At this transition in domain morphology, skyrmion phases are stabilized by small (<1 mT), perpendicular magnetic fields, and skyrmion motion in response to spin–orbit torque is observed. While the temperature and thickness‐induced morphological phase transitions observed are similar to the well‐studied spin reorientation transition that occurs in the ultrathin limit, the underlying energy balances are substantially modified by the presence of an iDMI. -
Abstract Despite their great promise for providing a pathway for very efficient and fast manipulation of magnetization, spin‐orbit torque (SOT) operations are currently energy inefficient due to a low damping‐like SOT efficiency per unit current bias, and/or the very high resistivity of the spin Hall materials. This work reports an advantageous spin Hall material, Pd1−
x Ptx , which combines a low resistivity with a giant spin Hall effect as evidenced with three independent SOT ferromagnetic detectors. The optimal Pd0.25Pt0.75alloy has a giant internal spin Hall ratio of >0.60 (damping‐like SOT efficiency of ≈0.26 for all three ferromagnets) and a low resistivity of ≈57.5 µΩ cm at a 4 nm thickness. Moreover, it is found that the Dzyaloshinskii–Moriya interaction (DMI), the key ingredient for the manipulation of chiral spin arrangements (e.g., magnetic skyrmions and chiral domain walls), is considerably strong at the Pd1−x Ptx /Fe0.6Co0.2B0.2interface when compared to that at Ta/Fe0.6Co0.2B0.2or W/Fe0.6Co0.2B0.2interfaces and can be tuned by a factor of 5 through control of the interfacial spin‐orbital coupling via the heavy metal composition. This work establishes a very effective spin current generator that combines a notably high energy efficiency with a very strong and tunable DMI for advanced chiral spintronics and spin torque applications. -
Abstract In bulk chiral crystals, 3D structures of magnetic skyrmions form topologically protected skyrmion strings (SkS) that have shown potential as magnonic nano‐waveguides for information transfer. Although SkS stability is expected to be enhanced in nanostructures of skyrmion‐hosting materials, experimental observation and detection of SkS in nanostructures under an applied in‐plane magnetic field is difficult. Here, temperature‐dependent magnetic field‐driven creation and annihilation of SkS in B20 FeGe nanostructures (nanowires and nanoplates) under in‐plane magnetic field (
H ||) are shown and the mechanisms behind these transformations are explained. Unusual asymmetric and hysteretic magnetoresistance (MR) features are observed but previously unexplained during magnetic phase transitions within the SkS stability regime whenH ||is along the nanostructure's long edge, which increase the sensitivity of MR detection. Lorentz transmission electron microscopy of the SkS and other magnetic textures underH ||in corroboration with the analysis of the anisotropic MR responses elucidates the field‐driven creation and annihilation processes of SkS responsible for such hysteretic MR features and reveals an unexplored stability regime in nanostructures. -
Abstract The crystal structure, electron energy-loss spectroscopy (EELS), heat capacity, and anisotropic magnetic and resistivity measurements are reported for Sn flux grown single crystals of orthorhombic Pr2Co3Ge5(U2Co3Si5-type,
Ibam ). Our findings show thato -Pr2Co3Ge5hosts nearly trivalent Pr ions, as evidenced by EELS and fits to temperature dependent magnetic susceptibility measurements. Complex magnetic ordering with a partially spin-polarized state emerges nearT sp= 32 K, with a spin reconfiguration transition nearT M= 15 K. Heat capacity measurements show that the phase transitions appear as broad peaks in the vicinity ofT spandT M. The magnetic entropy further reveals that crystal electric field splitting lifts the Hund’s rule degeneracy at low temperatures. Taken together, these measurements show that Pr2Co3Ge5is an environment for complexf state magnetism with potential strongly correlated electron states. -
Abstract Room‐temperature magnetic skyrmion materials exhibiting robust topological Hall effect (THE) are crucial for novel nano‐spintronic devices. However, such skyrmion‐hosting materials are rare in nature. In this study, a self‐intercalated transition metal dichalcogenide Cr1+
x Te2with a layered crystal structure that hosts room‐temperature skyrmions and exhibits large THE is reported. By tuning the self‐intercalate concentration, a monotonic control of Curie temperature from 169 to 333 K and a magnetic anisotropy transition from out‐of‐plane to the in‐plane configuration are achieved. Based on the intercalation engineering, room‐temperature skyrmions are successfully created in Cr1.53Te2with a Curie temperature of 295 K and a relatively weak perpendicular magnetic anisotropy. Remarkably, a skyrmion‐induced topological Hall resistivity as large as ≈106 nΩ cm is observed at 290 K. Moreover, a sign reversal of THE is also found at low temperatures, which can be ascribed to other topological spin textures having an opposite topological charge to that of the skyrmions. Therefore, chromium telluride can be a new paradigm of the skyrmion material family with promising prospects for future device applications.