skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Case Study of Enhancing the Data Science Capacity of an RCMI Program at a Historically Black Medical College
As data grows exponentially across diverse fields, the ability to effectively leverage big data has become increasingly crucial. In the field of data science, however, minority groups, including African Americans, are significantly underrepresented. With the strategic role of minority-serving institutions to enhance diversity in the data science workforce and apply data science to health disparities, the National Institute for Minority Health Disparities (NIMHD) provided funding in September 2021 to six Research Centers in Minority Institutions (RCMI) to improve their data science capacity and foster collaborations with data scientists. Meharry Medical College (MMC), a historically Black College/University (HBCU), was among the six awardees. This paper summarizes the NIMHD-funded efforts at MMC, which include offering mini-grants to collaborative research groups, surveys to understand the needs of the community to guide project implementation, and data science training to enhance the data analytics skills of the RCMI investigators, staff, medical residents, and graduate students. This study is innovative as it addressed the urgent need to enhance the data science capacity of the RCMI program at MMC, build a diverse data science workforce, and develop collaborations between the RCMI and MMC’s newly established School of Applied Computational Science. This paper presents the progress of this NIMHD-funded project, which clearly shows its positive impact on the local community.  more » « less
Award ID(s):
2117282
PAR ID:
10457415
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
International Journal of Environmental Research and Public Health
Date Published:
Journal Name:
International Journal of Environmental Research and Public Health
Volume:
20
Issue:
6
ISSN:
1660-4601
Page Range / eLocation ID:
4775
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite being disproportionately impacted by health disparities, Black, Hispanic, Indigenous, and other underrepresented populations account for a significant minority of graduates in biomedical data science-related disciplines. Given their commitment to educating underrepresented students and trainees, minority serving institutions (MSIs) can play a significant role in enhancing diversity in the biomedical data science workforce. Little has been published about the reach, curricular breadth, and best practices for delivering these data science training programs. The purpose of this paper is to summarize six Research Centers in Minority Institutions (RCMIs) awarded funding from the National Institute of Minority Health Disparities (NIMHD) to develop new data science training programs. A cross-sectional survey was conducted to better understand the demographics of learners served, curricular topics covered, methods of instruction and assessment, challenges, and recommendations by program directors. Programs demonstrated overall success in reach and curricular diversity, serving a broad range of students and faculty, while also covering a broad range of topics. The main challenges highlighted were a lack of resources and infrastructure and teaching learners with varying levels of experience and knowledge. Further investments in MSIs are needed to sustain training efforts and develop pathways for diversifying the biomedical data science workforce. 
    more » « less
  2. At San Francisco State University, a Hispanic Serving Institute and a Primarily Undergraduate Institution, 67% of engineering students are from ethnic minority groups, with only 27% of Hispanic students retained and graduated in their senior year. Additionally, only 14% of students reported full-time employment secured at the time of graduation. Of these secured jobs, only 54% were full-time positions (40+ hours a week). To improve the situation, San Francisco State University, in collaboration with two local community colleges, Skyline and Cañada Colleges, was recently funded by the National Science Foundation through a Hispanic Serving Institute Improving Undergraduate STEM Education Strengthening Student Motivation and Resilience through Research and Advising program to enhance undergraduate engineering education and build capacity for student success. This project will use a data-driven and evidence-based approach to identify the barriers to the success of underrepresented minority students and to generate new knowledge on the best practices for increasing students’ retention and graduation rates, self- efficacy, professional development, and workforce preparedness. Three objectives underpin this overall goal. The first is to develop and implement a Summer Research Internship Program together with community college partners. The second is to establish an HSI Engineering Success Center to provide students with academic resources, networking opportunities with industry, and career development tools. The third is to develop resources for the professional development of faculty members, including Summer Faculty Teaching Workshops, an Inclusive Teaching and Mentoring Seminar Series, and an Engineering Faculty Learning Community. Qualitative and quantitative approaches are used to assess the project outcomes using a survey instrument and interview protocols developed by an external evaluator. This paper discusses an overview of the project and its first-year implementation. The focus is placed on the introduction and implementation of the several main project components, namely the Engineering Success Center, Summer Research Internship Program, and Faculty Summer Teaching Workshop. The preliminary evaluation results, demonstrating the great success of these strategies, are also discussed. 
    more » « less
  3. Minority-serving institutions (MSIs), historically Black colleges and universities, and Tribal colleges and universities play a pivotal role in championing inclusivity and diversity within higher education systems across the nation. As catalysts for social change, they regularly engage in Broader Impacts (BI) work. However, these institutions often face challenges in resource allocation and a dearth of human capital to sustain vital operations, which hinders their capacity building efforts. This article explores how MSIs, exemplified by the City College of the City University of New York (CUNY), can empower faculty, staff, and trainees engaged in BI work to extend their influence beyond their institutions by adopting a community of practice and engagement (COPE) approach. By leveraging collective strengths of knowledge, expertise, and diversity, CUNY’s MSI campuses endeavor to foster a transformative ripple effect, shaping a more inclusive and equitable future through research and innovation. Beginning in Spring 2023, the City College of New York, in partnership with the Advancing Research Impact in Society (ARIS) National Science Foundation–funded center, embarked on initiatives to understand the existing BI culture, knowledge, and challenges to enhance BI and research development capacity across the CUNY system. This article discusses the pilot efforts and lessons learned from these endeavors. 
    more » « less
  4. null (Ed.)
    There has been a nationwide effort to increase the number, caliber, and diversity of the science, technology, engineering, and mathematics (STEM) workforce. Research on student development shows that while there is a need, providing financial aid alone is not a sufficient factor for academic success of low-income academically talented college students. Thus, Hostos Community College has recently created the NSF-funded Hostos Engineering Academic Talent (HEAT) Scholarship Program which offers its scholars financial support and experience with a combined mentoring model where students work with faculty and peers during the academic year. This research then systematically investigated the impact of a combined faculty- and peer-mentorship approach with a population not yet studied, undergraduate STEM students at minority-serving community colleges. Preliminary data indicates that the combined mentoring approach has positive effects on scholar’s academic performance and STEM identity. The findings are expected to be generalizable to other populations, and hence provide an opportunity to expand the combined mentorship model to other STEM programs at a variety of institutions whose students could benefit from its implementation. 
    more » « less
  5. In August 2016, the authors, faculty members at Lafayette College, were awarded a National Science Foundation (NSF) grant (Grant No. CMMI-1632963) based on an unsolicited proposal to the NSF’s CMMI Division. Like many faculty at strictly undergraduate institutions, we routinely provide opportunities for students to work on research projects and fund this research in some situations through external grants. An innovation in this particular grant was the creation of a research collaboration between faculty and students at Lafayette and an NSF-funded Engineering Research Center (ERC). As stated on the NSF website, “The goal of the ERC Program is to integrate engineering research and education with technological innovation to transform national prosperity, health, and security.” To accomplish this goal, collaborations between ERCs and other institutions are inherent in the work of an ERC; however, research collaborations between ERCs and small liberal arts colleges are rare and we know of no other collaboration of this type. In our most recent research project, we have developed and implemented a model that successfully provides our students and ourselves with opportunities to collaborate on an interdisciplinary research project with faculty, researchers, and graduate students at the NSF-funded Center for Bio-mediated and Bio-inspired Geotechnics (CBBG). This paper provides a brief overview of the goals of the research project and describes our motivation for establishing the collaboration, the structure of the collaboration, the anticipated broader impacts associated with the work, and the results from the first 18 months of the partnership. A logic model is included to illustrate the connections between the resources, strategies, outcomes, and long-term impacts associated with the collaboration. The goal of this paper is to describe the collaboration between Lafayette College and the ERC from the point of view of the faculty members at Lafayette, to describe the positive outcomes that have resulted from this collaboration, and to encourage faculty members at other small colleges to consider developing similar collaborations. 
    more » « less