skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural insights into melatonin receptors
The long‐anticipated high‐resolution structures of the human melatonin G protein‐coupled receptors MT1and MT2, involved in establishing and maintaining circadian rhythm, were obtained in complex with two melatonin analogs and two approved anti‐insomnia and antidepression drugs using X‐ray free‐electron laser serial femtosecond crystallography. The structures shed light on the overall conformation and unusual structural features of melatonin receptors, as well as their ligand binding sites and the melatonergic pharmacophore, thereby providing insights into receptor subtype selectivity. The structures revealed an occluded orthosteric ligand binding site with a membrane‐buried channel for ligand entry in both receptors, and an additional putative ligand entry path in MT2from the extracellular side. This unexpected ligand entry mode contributes to facilitating the high specificity with which melatonin receptors bind their cognate ligand and exclude structurally similar molecules such as serotonin, the biosynthetic precursor of melatonin. Finally, the MT2structure allowed accurate mapping of type 2 diabetes‐related single‐nucleotide polymorphisms, where a clustering of residues in helices I and II on the protein–membrane interface was observed which could potentially influence receptor oligomerization. The role of receptor oligomerization is further discussed in light of the differential interaction of MT1and MT2with GPR50, a regulatory melatonin coreceptor. The melatonin receptor structures will facilitate design of selective tool compounds to further dissect the specific physiological function of each receptor subtype as well as provide a structural basis for next‐generation sleeping aids and other drugs targeting these receptors with higher specificity and fewer side effects.  more » « less
Award ID(s):
1231306
PAR ID:
10457444
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The FEBS Journal
Volume:
287
Issue:
8
ISSN:
1742-464X
Page Range / eLocation ID:
p. 1496-1510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Endocannabinoids are naturally occurring lipid-like molecules that bind to cannabinoid receptors (CB1and CB2) and regulate many of human bodily functions via the endocannabinoid system. There is a tremendous interest in developing selective drugs that target the CB receptors. However, the biophysical mechanisms responsible for the subtype selectivity for endocannbinoids have not been established. Recent experimental structures of CB receptors show that endocannbinoids potentially bind via membrane using the lipid access channel in the transmembrane region of the receptors. Furthermore, the N-terminus of the receptor could move in and out of the binding pocket thereby modulating both the pocket volume and its residue composition. On the basis of these observations, we propose two hypothesis to explain the selectivity of the endocannabinoid, anandamide for CB1receptor. First, the selectivity arises from distinct enthalpic ligand-protein interactions along the ligand binding pathway formed due to the movement of N-terminus and subsequent shifts in the binding pocket composition. Second, selectivity arises from the volumetric differences in the binding pocket allowing for differences in ligand conformational entropy. To quantitatively test these hypothesis, we perform extensive molecular dynamics simulations (∼0.9 milliseconds) along with Markov state modeling and deep learning-based VAMPnets to provide an interpretable characterization of the anandamide binding process to cannabinoid receptors and explain its selectivity for CB1. Our findings reveal that the distinct N-terminus positions along lipid access channels between TM1 and TM7 lead to different binding mechanisms and interactions between anandamide and the binding pocket residues. To validate the critical stabilizing interactions along the binding pathway, relative free energy calculations of anandamide analogs are used. Moreover, the larger CB2pocket volume increases the entropic effects of ligand binding by allowing higher ligand fluctuations but reduced stable interactions. Therefore, the opposing enthalpy and entropy effects between the receptors shape the endocannabinoid selectivity. Overall, the CB1selectivity of anandamide is explained by the dominant enthalpy contributions due to ligand-protein interactions in stable binding poses. This study shed lights on potential selectivity mechanisms for endocannabinoids that would aid in the discovery of CB selective drugs 
    more » « less
  2. Abstract The bioactive lysophospholipid sphingosine-1-phosphate (S1P) acts via five different subtypes of S1P receptors (S1PRs) - S1P1-5. S1P5is predominantly expressed in nervous and immune systems, regulating the egress of natural killer cells from lymph nodes and playing a role in immune and neurodegenerative disorders, as well as carcinogenesis. Several S1PR therapeutic drugs have been developed to treat these diseases; however, they lack receptor subtype selectivity, which leads to side effects. In this article, we describe a 2.2 Å resolution room temperature crystal structure of the human S1P5receptor in complex with a selective inverse agonist determined by serial femtosecond crystallography (SFX) at the Pohang Accelerator Laboratory X-Ray Free Electron Laser (PAL-XFEL) and analyze its structure-activity relationship data. The structure demonstrates a unique ligand-binding mode, involving an allosteric sub-pocket, which clarifies the receptor subtype selectivity and provides a template for structure-based drug design. Together with previously published S1PR structures in complex with antagonists and agonists, our structure with S1P5-inverse agonist sheds light on the activation mechanism and reveals structural determinants of the inverse agonism in the S1PR family. 
    more » « less
  3. Melatonin receptors MT1 and MT2 are involved in synchronizing circadian rhythms and are important targets for treating sleep and mood disorders, type-2 diabetes and cancer. Here, we performed large scale structure-based virtual screening for new ligand chemotypes using recently solved high-resolution 3D crystal structures of agonist-bound MT receptors. Experimental testing of 62 screening candidates yielded the discovery of 10 new agonist chemotypes with sub-micromolar potency at MT receptors, with compound 21 reaching EC50 of 0.36 nM. Six of these molecules displayed selectivity for MT2 over MT1. Moreover, two most potent agonists, including 21 and a close derivative of melatonin, 28, had dramatically reduced arrestin recruitment at MT2, while compound 37 was devoid of Gi signaling at MT1, implying biased signaling. This study validates the suitability of the agonist-bound orthosteric pocket in the MT receptor structures for the structure-based discovery of selective agonists. 
    more » « less
  4. G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, computational prediction of GPCR ligand binding becomes a convincing option to high throughput screening and other experimental approaches during the beginning phases of ligand discovery. In this work, we set out to computationally uncover and understand the binding of a single ligand to GPCRs from several different families. Three-dimensional structural comparisons of the GPCRs that bind to the same ligand revealed local 3D structural similarities and often these regions overlap with locations of binding pockets. These pockets were found to be similar (based on backbone geometry and side-chain orientation using APoc), and they correlate positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the more likely a ligand binding to the pockets will interact with similar residues, have similar conformations, and produce similar binding affinities across the pockets. These findings can be exploited to improve protein function inference, drug repurposing and drug toxicity prediction, and accelerate the development of new drugs. 
    more » « less
  5. null (Ed.)
    Background: The growing evidence that G protein-coupled receptors (GPCRs) not only form oligomersbut that the oligomers also may modulate the receptor function provides a promising avenue in the area ofdrug design. Highly selective drugs targeting distinct oligomeric sub-states offer the potential to increase efficacywhile reducing side effects. In this regard, determining the various oligomeric configurations and geometricsub-states of a membrane receptor is of utmost importance. Methods: In this report, we have reviewed two techniques that have proven to be valuable in monitoring thequaternary structure of proteins in vivo: Fӧrster resonance energy transfer (FRET) spectrometry and fluorescenceintensity fluctuation (FIF) spectrometry. In FRET spectrometry, distributions of pixel-level FRET efficiencyare analyzed using theoretical models of various quaternary structures to determine the geometry andstoichiometry of protein oligomers. In FIF spectrometry, spatial fluctuations of fluorescent molecule intensitiesare analyzed to reveal quantitative information on the size and stability of protein oligomers. Results: We demonstrate the application of these techniques to a number of different fluorescence-based studiesof cells expressing fluorescently labeled membrane receptors, both in the presence and absence of variousligands. The results show the effectiveness of using FRET spectrometry to determine detailed information regardingthe quaternary structure receptors form, as well as FIF and FRET for determining the relative abundanceof different-sized oligomers when an equilibrium forms between such structures. Conclusion: FRET and FIF spectrometry are valuable techniques for characterizing membrane receptor oligomers,which are of great benefit to structure‐based drug design. 
    more » « less