The Mekong River Basin (MRB) is undergoing unprecedented changes due to the recent acceleration in large-scale dam construction. While the hydrology of the MRB is well understood and the effects of some of the existing dams have been studied, the potential effects of the planned dams on flood pulse dynamics over the entire Lower Mekong remains unexamined. Here, using hydrodynamic model simulations, we show that the effects of flow regulation on downstream river-floodplain dynamics are relatively predictable along the mainstream Mekong, but flow regulations could potentially disrupt the flood dynamics in the Tonle Sap River (TSR) and small distributaries in the Mekong Delta. Results suggest that TSR flow reversal could cease if the Mekong flood pulse is dampened by 50% and delayed by one-month. While flood occurrence in the vicinity of the Tonle Sap Lake and middle reach of the delta could increase due to enhanced low flow, it could decrease by up to five months in other areas due to dampened high flow, particularly during dry years. Further, areas flooded for less than five months and over six months are likely to be impacted significantly by flow regulations, but those flooded for 5–6 months could be impacted the least.
Tonle Sap Lake in Cambodia is arguably the world's most productive freshwater ecosystems, as well as the dominant source of animal protein for the country. The rapid rise of hydropower schemes, deforestation, land development and climate change impacts in the Mekong River Basin, however, now represent serious concerns in regard to Tonle Sap Lake's ecological health and its role in future food security. To this end, the present study identifies significant recent warming of lake temperature and discusses how each of these anthropogenic perturbations in Tonle Sap's floodplain and the Mekong River Basin may be influencing this trend. The lake's dry season monthly average temperature increased by 0.03°C/year between 1988 and 2018, being largely in synchrony with warming trends of the local air temperature and upstream rivers. The impacts of deforestation and agriculture development in the lake's floodplain also exhibited a high correlation with an increased number of warm days observed in the lake, particularly in its southeast region (agriculture
- Award ID(s):
- 1740042
- NSF-PAR ID:
- 10457493
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Lakes & Reservoirs: Science, Policy and Management for Sustainable Use
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1320-5331
- Page Range / eLocation ID:
- p. 133-142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Despite efforts to understand the hydrologic impact of hydropower dams, their influence on downstream river temperatures has gone unnoticed in data limited regions. Using 30 years of Landsat thermal infrared observations (1988–2018), we identified a relationship between dry season water temperature cooling trends and dam development in the 3S Basin, a major tributary of the Mekong River. Within a year of the beginning of operations of major dams in the 3S River Basin, rapid decreases in annual average dry season river temperature were observed ranging between 0.7 ° C and 2 ° C. Furthermore,
in situ water temperature observations confirmed decreasing river temperature for two major dam development events. Evidence was found that the 3S outflow has been cooling the Mekong River downstream of the confluence, by as much as 0.8 ° C in recent years. Our findings are critically important for understanding how fish and aquatic ecosystems will behave in the future as more hydropower dams are built in the Mekong River Basin. -
Abstract. Flow regimes in major global river systems are undergoing rapid alterations due to unprecedented stress from climate change and human activities. The Mekong River basin (MRB) was, until recently, among the last major global rivers relatively unaltered by humans, but this has been changing alarmingly in the last decade due to booming dam construction. Numerous studies have examined the MRB's flood pulse and its alterations in recent years. However, a mechanistic quantification at the basin scale attributing these changes to either climatic or human drivers is lacking. Here, we present the first results of the basin-wide changes in natural hydrological regimes in the MRB over the past 8 decades and the impacts of dams in recent decades by examining 83 years (1940–2022) of river regime characteristics simulated by a river–floodplain hydrodynamic model that includes 126 major dams in the MRB. Results indicate that, while the Mekong River's flow has shown substantial decadal trends and variabilities, the operation of dams in recent years has been causing a fundamental shift in the seasonal volume and timing of river flow and extreme hydrological conditions. Even though the dam-induced impacts have been small so far and most pronounced in areas directly downstream of major dams, dams are intensifying the natural variations in the Mekong's mainstream wet-season flow. Further, the additional 65 dams commissioned since 2010 have exacerbated drought conditions by substantially delaying the MRB's wet-season onset, especially in recent years (e.g., 2019 and 2020), when the natural wet-season durations are already shorter than in normal years. Further, dams have shifted by up to 20 % of the mainstream annual volume between the dry and wet seasons in recent years. While this has a minimal impact on the MRB's annual flow volume, the flood occurrence in many major areas of Tonlé Sap and the Mekong Delta has been largely altered. This study provides critical insights into the long-term hydrological variabilities and impacts of dams on the Mekong River's flow regimes, which can help improve water resource management in light of intensifying hydrological extremes.
-
Abstract Impacts of urban development on aquatic populations are often complex and difficult to ascertain, but population genetic analysis has allowed researchers to monitor and estimate gene flow in the context of existing and future hydroelectric projects. The Lower Mekong Basin is undergoing rapid hydroelectric development with around 50 completed and under‐construction dams and 95 planned dams. The authors investigated the baseline genetic diversity of two exploited migratory fishes, the mud carp
Henicorhynchus lobatus (five locations), and the rat‐faced pangasiid catfish,Helicophagus leptorhynchus (two locations), in the Lower Mekong Basin using the genomic double digest restriction site‐associated DNA (ddRAD) sequencing method. In both species, fish sampled upstream of Khone Falls were differentiated from those collected at other sites, andN e estimates at the site above the falls were lower than those at other sites. This was the first study to utilize thousands of RAD‐generated single nucleotide polymorphisms to indicate that the Mekong's Khone Falls are a potential barrier to gene flow for these two moderately migratory species. The recent completion of the Don Sahong dam across one of the only channels for migratory fishes through Khone Falls may further exacerbate signatures of isolation and continue to disrupt the migration patterns of regionally vital food fishes. In addition,H. lobatus populations downstream of Khone Falls, including the 3S Basin and Tonle Sap system, displayed robust connectivity. Potential obstruction of migration pathways between these river systems resulting from future dam construction may limit dispersal, which has led to elevated inbreeding rates and even local extirpation in other fragmented riverine species. -
null (Ed.)In Mekong riparian countries, hydropower development provides energy, but also threatens biodiversity, ecosystems, food security, and an unparalleled freshwater fishery. The Sekong, Sesan, and Srepok Rivers (3S Basin) are major tributaries to the Lower Mekong River (LMB), making up 10% of the Mekong watershed but supporting nearly 40% of the fish species of the LMB. Forty-five dams have been built, are under construction, or are planned in the 3S Basin. We completed a meta-analysis of aquatic and riparian environmental losses from current, planned, and proposed hydropower dams in the 3S and LMB using 46 papers and reports from the past three decades. Proposed mainstem Stung Treng and Sambor dams were not included in our analysis because Cambodia recently announced a moratorium on mainstem Mekong River dams. More than 50% of studies evaluated hydrologic change from dam development, 33% quantified sediment alteration, and 30% estimated fish production changes. Freshwater fish diversity, non-fish species, primary production, trophic ecology, and nutrient loading objectives were less commonly studied. We visualized human and environmental tradeoffs of 3S dams from the reviewed papers. Overall, Lower Sesan 2, the proposed Sekong Dam, and planned Lower Srepok 3A and Lower Sesan 3 have considerable environmental impacts. Tradeoff analyses should include environmental objectives by representing organisms, habitats, and ecosystems to quantify environmental costs of dam development and maintain the biodiversity and extraordinary freshwater fishery of the LMB.more » « less