skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Multi‐scale drivers of spatial patterns in floodplain sediment and phosphorus deposition
Abstract

The capacity for floodplains to capture sediment and filter pollutants is spatially variable and depends on the complex interactions of geomorphic, geologic, and hydrologic variables that operate at multiple scales. In this study, we integrated watershed‐scale and local assessments to improve our understanding of floodplain depositional patterns. We developed a dataset of event‐scale observations of sediment and phosphorus deposition rates distributed at 129 plots across large environmental gradients of floodplain topography, valley geometry, and watershed characteristics in the Lake Champlain Basin, Vermont. Plot‐scale observations were used to evaluate the cross‐scale influence of environmental factors and were summarized into site‐scale averages to explore regional trends. Consistent with other studies, floodplain deposition generally scaled with drainage area, but trends were longitudinally discontinuous and depended on variations in valley width and slope. While variability in deposition patterns at the watershed‐scale was large (average of 2.0 (0.2–9.8) kg sediment m−2 yr−1; average of 1.4 (0.2–6.5) g phosphorus m−2 yr−1), the range in deposition rates locally across a floodplain was greater (average of 4.6 (0.06–21.7) kg sediment m−2 yr−1; average of 6.4 (0.1–41.1) g phosphorus m−2 yr−1). Local variables that described the proximity to water and sediment sources, and frequency with which the plot was activated by a flood, had the greatest relative contribution to boosted regression tree models of phosphorus deposition rates, highlighting the importance of river–floodplain connectivity for floodplain functioning and the profound impact of human activities that limit such connectivity. Patterns identified in our study may guide prioritization of restoration and conservation practices designed to capture sediment and phosphorus on floodplains.

 
more » « less
NSF-PAR ID:
10443523
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
48
Issue:
4
ISSN:
0197-9337
Page Range / eLocation ID:
p. 801-816
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stream geomorphic change is highly spatially variable but critical to landform evolution, human infrastructure, habitat, and watershed pollutant transport. However, measurements and process models of streambank erosion and floodplain deposition and resulting sediment fluxes are currently insufficient to predict these rates in all perennial streams over large regions. Here we measured long-term lateral streambank and vertical floodplain change and sediment fluxes using dendrogeomorphology in streams around the U.S. Mid-Atlantic, and then statistically modeled and extrapolated these rates to all 74 133 perennial, nontidal streams in the region using watershed- and reach-scale predictors. Measured long-term rates of streambank erosion and floodplain deposition were highly spatially variable across the landscape from the mountains to the coast. Random Forest regression identified that geomorphic change and resulting fluxes of sediment and nutrients, for both streambank and floodplain, were most influenced by urban and agricultural land use and the drainage area of the upstream watershed. Modeled rates for headwater streams were net erosional whereas downstream reaches were on average net depositional, leading to regional cumulative sediment loads from streambank erosion (−5.1 Tg yr −1 ) being nearly balanced by floodplain deposition (+5.3 Tg yr −1 ). Geomorphic changes in stream valleys had substantial influence on watershed sediment, phosphorus, carbon, and nitrogen budgets in comparison to existing predictions of upland erosion and delivery to streams and of downstream sediment loading. The unprecedented scale of these novel findings provides important insights into the balance of erosion and deposition in streams within disturbed landscapes and the importance of geomorphic change to stream water quality and carbon sequestration, and provides vital understanding for targeting management actions to restore watersheds. 
    more » « less
  2. Abstract

    Rapid warming in the Arctic threatens to destabilize mercury (Hg) deposits contained within soils in permafrost regions. Yet current estimates of the amount of Hg in permafrost vary by ∼4 times. Moreover, how Hg will be released to the environment as permafrost thaws remains poorly known, despite threats to water quality, human health, and the environment. Here we present new measurements of total mercury (THg) contents in discontinuous permafrost in the Yukon River Basin in Alaska. We collected riverbank and floodplain sediments from exposed banks and bars near the villages of Huslia and Beaver. Median THg contents were 49+13/−21ng THg g sediment−1and 39+16/−18ng THg g sediment−1for Huslia and Beaver, respectively (uncertainties as 15th and 85th percentiles). Corresponding THg:organic carbon ratios were 5.4+2.0/−2.4Gg THg Pg C−1and 4.2+2.4/−2.9Gg THg Pg C−1. To constrain floodplain THg stocks, we combined measured THg contents with floodplain stratigraphy. Trends of THg increasing with smaller sediment size and calculated stocks in the upper 1 m and 3 m are similar to those suggested for this region by prior pan-Arctic studies. We combined THg stocks and river migration rates derived from remote sensing to estimate particulate THg erosional and depositional fluxes as river channels migrate across the floodplain. Results show similar fluxes within uncertainty into the river from erosion at both sites (95+12/−47kg THg yr−1and 26+154/−13kg THg yr−1at Huslia and Beaver, respectively), but different fluxes out of the river via deposition in aggrading bars (60+40/−29kg THg yr−1and 10+5.3/−1.7kg THg yr−1). Thus, a significant amount of THg is liberated from permafrost during bank erosion, while a variable but generally lesser portion is subsequently redeposited by migrating rivers.

     
    more » « less
  3. Abstract

    The quantity and preservation of carbon‐rich organic matter (OM) underlying permafrost uplands, and the evolution of carbon accumulation with millennial climate change, are large sources of uncertainty in carbon cycle feedbacks on climate change. We investigated permafrost OM accumulation and degradation over the Holocene using a transect of sediment cores dating back to at least c. 6 ka, from a hillslope in the Eight Mile Lake watershed, central Alaska. We find decimeter‐scale organic‐rich (111 ± 45 kg C m−3) and organic‐poor (49 ± 30 kg C m−3) layers below an upper peat, which store 35% ± 11% and 41% ± 20% of the carbon in the upper 1 m, respectively. In organic‐poor layers, scattered14C ages of plant macrofossils and higher percentages of degradedAlnusandBetulapollen indicate reworking by cryoturbation and hillslope processes. Whereas organic carbon to nitrogen ratios generally indicate OM freshening up‐core, amino acid bacterial biomarkers, includingd‐enantiomers and gamma‐aminobutyric acid, suggest enhanced degradation prior to 5 ka. Carbon accumulation rates increased from ∼4 to 14 g C m−2 year−1from c. 8 to 0.2 ka, coinciding with decreasing temperatures and increasing moisture regionally, which may have promoted OM accumulation. Carbon stocks within the upper 1 m average 66 ± 13 kg C m−2, varying from 77 kg C m−2in a buried depression on the upper slope to 48 kg C m−2downslope. We conclude that heterogeneity in preserved OM reflects a combination of hillslope geomorphic processes, cryoturbation, and climatic variations over the Holocene.

     
    more » « less
  4. Abstract

    This study examines centennial‐scale hydrological and sedimentological effects of floodplain inundation by avulsion and its upstream and downstream controls. The 1870s avulsion in Cumberland Marshes diverted the Saskatchewan River flow towards Cumberland Lake, a local base level. It invaded a poorly drained sub‐basin of Cumberland Marshes floodplain linked to the parent Saskatchewan River by two small outlets in the resistant substrate. The rapid increase in inflow (~5× on average) during the earlier stages of the avulsion resulted in the base‐level rise and floodplain inundation by the avulsion lake. Since the early 20th century, the forced regression of the avulsion lake occurred, caused by ~5× outlet channel enlargement by ‘hungry‐water’ outflows, whereas the mean lake inflows experienced little change. The avulsion lake served as an effective sediment trap and was filled by predominantly progradational sandy and silty avulsion deposits up to 3–4 m thick, covering about 700 km2. Elsewhere, fluviodeltaic settings with ‘negative relief’ and limited hydrologic connectivity with the rest of the floodplain may be prone to avulsion lakes that form if the rates of inflow increased by avulsion exceed the rates of outflow. Avulsion lakes can last for ~100 years or more before they drain and/or become filled by overbank sediments. On well‐drained floodplains, inundations by avulsions are expected to be short‐term and result in little progradational deposition. This study demonstrates that in some local hydrographic basins, base level becomes a variable of an evolving avulsion rather than its fixed external control. Although avulsion‐induced base‐level changes are short‐lived, they affect 102–103 km2of a floodplain and occur rapidly, accompanied by high aggradation rates.

     
    more » « less
  5. Nutrient removal by a 4.6-ha urban stormwater treatment wetland system in a 20-ha water/nature park in southwest Florida has been investigated for several years, suggesting that the wetlands are significant sinks of both phosphorus and nitrogen although with a slightly decreased total phosphorus retention in recent years. This study investigates the role of sedimentation on changes in nutrient concentrations and fluxes through these wetlands. Sedimentation bottles along with sediment nutrient analyses every six months allowed us to estimate gross sedimentation rates of 9.9±0.1 cm yr−1 and nutrient sedimentation rates of approximately 7.8 g-P m−2 yr−1 and 81.7 g-Nm−2 yr−1. Using a horizon marker method to account for lack of resuspension in the sedimentation bottles suggested that net nutrient retention by sedimentation may be closer to 1.5 g-Pm−2 yr−1 and 33.2 g-N m−2 yr−1. Annual nutrient retention of the wetland system determined from water quality measurements at the inflow and outflow averaged 4.23 g-P m−2 yr−1 and 11.91 g-N m–2 yr−1, suggesting that sedimentationis a significant pathway for nutrient retention in these urban wetlands and that resuspension is playing a significant role in reintroducing nutrients, especially phosphorus, to the water column. These results also suggest that additional sources of nitrogen not in our current nutrient budgets may be affecting overall nutrient retention. 
    more » « less