skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multifunctional Mechanical Metamaterials with Embedded Triboelectric Nanogenerators
Abstract The flexibility of planar triboelectric nanogenerators (TENGs) enables them to be embedded into structures with complex geometries and to conform with any deformation of these structures. In return, the embedded TENGs function as either strain‐sensitive active sensors or energy harvesters while negligibly affecting the structure's original mechanical properties. This advantage inspires a new class of multifunctional materials where compliant TENGs are distributed into local operational units of mechanical metamaterial, dubbed TENG‐embedded mechanical metamaterials. This new class of metamaterial inherits the advantages of a traditional mechanical metamaterial, in that the deformation of the internal topology of material enables unusual mechanical properties. The concept is illustrated with experimental investigations and finite element simulations of prototypes based on two exemplar metamaterial geometries where functions of self‐powered sensing, energy harvesting, as well as the designated mechanical behavior are investigated. This work provides a new framework in producing multifunctional triboelectric devices.  more » « less
Award ID(s):
1662925
PAR ID:
10457494
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
23
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deformable energy devices capable of efficiently scavenging ubiquitous mechanical signals enable the realization of self-powered wearable electronic systems for emerging human-integrated technologies. Triboelectric nanogenerators (TENGs) utilizing soft polymers with embedded additives and engineered dielectric properties emerge as ideal candidates for such applications. However, the use of solid filler materials in the state-of-the-art TENGs limits the devices' mechanical deformability and long-term durability. The current structural design for TENGs faces the dilemma where the enhanced dielectric constant of the TENG's contact layer leads to an undesirable saturation of the surface charge density. Here, we present a novel scheme to address the above issues, by exploring a liquid-metal-inclusion based TENG (LMI-TENG) where inherently deformable core–shell LMIs are incorporated into wearable high-dielectric-constant polymers. Through a holistic approach integrating theoretical and experimental efforts, we identified the parameter space for designing an LMI-TENG with co-optimized output and mechanical deformability. As a proof of concept, we demonstrated an LMI-TENG based wireless media control system for a self-powered user interface. The device architecture and design scheme presented here provide a promising solution towards the realization of self-powered human-integrated technologies. 
    more » « less
  2. Abstract Triboelectric nanogenerators (TENGs) are devices capable of effectively harvesting electrical energy from mechanical motion prevalent around us. With the goal of developing TENGs with a small environmental footprint, herein we present the potential of using rubber and paper as biological materials for constructing triboelectric nanogenerators. We explored the performance of these TENGs with various contact material combinations, electrode sizes, and operational frequencies. The optimally configured TENG achieved a maximum open circuit output voltage of over 30 V, and a short circuit current of around 3 µA. Additionally, this optimally configured TENG was capable of charging various capacitors and achieved a maximum power output density of 21 mW/m2. This work demonstrates that biologically derived materials can be used as effective, sustainable, and low-cost contact materials for the development of triboelectric nanogenerators with minimal environmental footprint. 
    more » « less
  3. Abstract Microfluidic valves play a key role within microfluidic systems by regulating fluid flow through distinct microchannels, enabling many advanced applications in medical diagnostics, lab‐on‐chips, and laboratory automation. While microfluidic systems are often limited to planar structures, 3D printing enables new capabilities to generate complex designs for fluidic circuits with higher densities and integrated components. However, the control of fluids within 3D structures presents several difficulties, making it challenging to scale effectively and many fluidic devices are still often restricted to quasi‐planar structures. Incorporating mechanical metamaterials that exhibit spatially adjustable mechanical properties into microfluidic systems provides an opportunity to address these challenges. Here, systematic computational and experimental characterization of a modified re‐entrant honeycomb structure are performed to generate a modular metamaterial for an active device that allows us to directly regulate flow through integrated, multiplexed fluidic channels “one‐at‐a‐time,” in a manner that is highly scalable. A design algorithm is presented, so that this architecture can be extended to arbitrary geometries, and it is expected that by incorporation of mechanical metamaterial designs into 3D printed fluidic systems, which themselves are readily expandable to any complex geometries, will enable new biotechnological and biomedical applications of 3D printed devices. 
    more » « less
  4. Abstract Mechanical metamaterials are architected manmade materials that allow for unique behaviors not observed in nature, making them promising candidates for a wide range of applications. Existing metamaterials lack tunability as their properties can only be changed to a limited extent after the fabrication. Herein, a new magneto‐mechanical metamaterial is presented that allows great tunability through a novel concept of deformation mode branching. The architecture of this new metamaterial employs an asymmetric joint design using hard‐magnetic soft active materials that permits two distinct actuation modes (bending and folding) under opposite‐direction magnetic fields. The subsequent application of mechanical compression leads to the deformation mode branching where the metamaterial architecture transforms into two distinctly different shapes, which exhibit very different deformations and enable great tunability in properties such as mechanical stiffness and acoustic bandgaps. Furthermore, this metamaterial design can be incorporated with magnetic shape memory polymers with global stiffness tunability, which also allows for the global shift of the acoustic behaviors. The combination of magnetic and mechanical actuations, as well as shape memory effects, impart wide tunable properties to a new paradigm of metamaterials. 
    more » « less
  5. Abstract Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, a selective actuation strategy is proposed for inhomogeneous deformations of magneto‐mechanical metamaterials, which allows for the integration of multiple elastic wave‐tuning functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. The numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto‐mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhances the programmability of magneto‐mechanical metamaterials, which also expands the application space of magneto‐mechanical metamaterials in elastic wave manipulation. 
    more » « less