skip to main content


Title: A comparison of extreme precipitation event frequency and magnitude using a high‐resolution rain gage network and NOAA Atlas 14 across Delaware
Abstract

Extreme precipitation events are arguably one of the most important natural hazards in many areas of the globe, impacting nearly every societal sector. In the Northeastern United States, extreme precipitation events have been shown to be increasing with several recent events garnering national attention (i.e., Ellicott City Maryland 2018; Tropical Storm Lee 2011). The NOAA Atlas 14 product is the nation's standard for estimating the magnitude and frequency of site‐specific extreme precipitation events, containing both precipitation frequency estimates, as well as associated confidence intervals. The Atlas uses surface stations, primarily from the National Weather Service Cooperative Observer Program, and statistical methodologies to provide point‐based precipitation exceedance probability estimates for several durations and potential recurrence intervals. Unfortunately, the number and quality of Cooperative Observer sites varies greatly over space and time. This research compares observed precipitation extremes from a high‐resolution statewide mesonet to those estimated by the Atlas 14 product for a 10‐year recurrence interval at several precipitation durations. Results of the analysis indicate that Atlas 14 underestimates the number and magnitude of extreme precipitation events across the state of Delaware at longer event durations (360‐ to 1,440‐min). At shorter durations (5‐ to 240‐min) the Atlas 14 estimates are more closely aligned with the observations from the high‐resolution precipitation network. These results suggest that caution should be exercised when using Atlas 14 estimates for engineering standards and hydrologic studies, especially for longer duration events. Therefore, a more rapid update cycle for revision of the Atlas 14 product should be considered, as a changing climate regime may be responsible for the differences identified in this research.

 
more » « less
Award ID(s):
1757353
NSF-PAR ID:
10457531
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
40
Issue:
8
ISSN:
0899-8418
Page Range / eLocation ID:
p. 3748-3756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Urgency of Precipitation Intensity-Duration-Frequency (IDF) estimation using the most recent data has grown significantly due to recent intense precipitation and cloud burst circumstances impacting infrastructure caused by climate change. Given the continually available digitized up-to-date, long-term, and fine resolution precipitation dataset from the United States Department of Agriculture Forest Service’s (USDAFS) Experimental Forests and Ranges (EF) rain gauge stations, it is both important and relevant to develop precipitation IDF from onsite dataset (Onsite-IDF) that incorporates the most recent time period, aiding in the design, and planning of forest road-stream crossing structures (RSCS) in headwaters to maintain resilient forest ecosystems. Here we developed Onsite-IDFs for hourly and sub-hourly duration, and 25-yr, 50-yr, and 100-yr design return intervals (RIs) from annual maxima series (AMS) of precipitation intensities (PIs) modeled by applying Generalized Extreme Value (GEV) analysis and L-moment based parameter estimation methodology at six USDAFS EFs and compared them with precipitation IDFs obtained from the National Oceanic and Atmospheric Administration Atlas 14 (NOAA-Atlas14). A regional frequency analysis (RFA) was performed for EFs where data from multiple precipitation gauges are available. NOAA’s station-based precipitation IDFs were estimated for comparison using RFA (NOAA-RFA) at one of the EFs where NOAA-Atlas14 precipitation IDFs are unavailable. Onsite-IDFs were then evaluated against the PIs from NOAA-Atlas14 and NOAA-RFA by comparing their relative differences and storm frequencies. Results show considerable relative differences between the Onsite- and NOAA-Atlas14 (or NOAA-RFA) IDFs at these EFs, some of which are strongly dependent on the storm durations and elevation of precipitation gauges, particularly in steep, forested sites of H. J. Andrews (HJA) and Coweeta Hydrological Laboratory (CHL) EFs. At the higher elevation gauge of HJA EF, NOAA-RFA based precipitation IDFs underestimate PI of 25-yr, 50-yr, and 100-yr RIs by considerable amounts for 12-h and 24-h duration storm events relative to the Onsite-IDFs. At the low-gradient Santee (SAN) EF, the PIs of 3- to 24-h storm events with 100-yr frequency (or RI) from NOAA-Atlas14 gauges are found to be equivalent to PIs of more frequent storm events (25–50-yr RI) as estimated from the onsite dataset. Our results recommend use of the Onsite-IDF estimates for the estimation of design storm peak discharge rates at the higher elevation catchments of HJA, CHL, and SAN EF locations, particularly for longer duration events, where NOAA-based precipitation IDFs underestimate the PIs relative to the Onsite-IDFs. This underscores the importance of long-term high resolution EF data for new applications including ecological restorations and indicates that planning and design teams should use as much local data as possible or account for potential PI inconsistencies or underestimations if local data are unavailable.

     
    more » « less
  2. Abstract. Conventional rainfall frequency analysis faces several limitations. These include difficulty incorporating relevant atmospheric variables beyond precipitation and limited ability to depict the frequency of rainfall over large areas that is relevant for flooding. This study proposes a storm-based model of extreme precipitation frequency based on the atmospheric water balance equation. We developed a storm tracking and regional characterization (STARCH) method to identify precipitation systems in space and time from hourly ERA5 precipitation fields over the contiguous United States from 1951 to 2020. Extreme “storm catalogs” were created by selecting annual maximum storms with specific areas and durations over a chosen region. The annual maximum storm precipitation was then modeled via multivariate distributions of atmospheric water balance components using vine copula models. We applied this approach to estimate precipitation average recurrence intervals for storm areas from 5000 to 100 000 km2 and durations from 2 to 72 h in the Mississippi Basin and its five major subbasins. The estimated precipitation distributions show a good fit to the reference data from the original storm catalogs and are close to the estimates from conventional univariate GEV distributions. Our approach explicitly represents the contributions of water balance components in extreme precipitation. Of these, water vapor flux convergence is the main contributor, while precipitable water and a mass residual term can also be important, particularly for short durations and small storm footprints. We also found that ERA5 shows relatively good water balance closure for extreme storms, with a mass residual on average 10 % of precipitation. The approach can incorporate nonstationarities in water balance components and their dependence structures and can benefit from further advancements in reanalysis products and storm tracking techniques. 
    more » « less
  3. International Ocean Discovery Program (IODP) Expedition 386, Japan Trench Paleoseismology (offshore period: 13 April to 1 June 2021; Onshore Science Party: 14 February to 14 March 2022) was designed to test the concept of submarine paleoseismology in the Japan Trench, the area where the last, and globally only one out of four instrumentally-recorded, giant (i.e. magnitude 9 class) earthquake occurred back in 2011. “Submarine paleoseismology” is a promising approach to investigate deposits from the deep sea, where earthquakes leave traces preserved in the stratigraphic succession, to reconstruct the long-term history of earthquakes and to deliver observational data that help to reduce uncertainties in seismic hazard assessment for long return periods. This expedition marks the first time, giant piston coring (GPC) was used in IODP, and also the first time, partner IODP implementing organizations cooperated in jointly implementing a mission-specific platform expedition. We successfully collected 29 GPCs at 15 sites (1 to 3 holes each; total core recovery 831 meters), recovering 20 to 40-meter-long, continuous, upper Pleistocene to Holocene stratigraphic successions of 11 individual trench-fill basins along an axis-parallel transect from 36°N – 40.4°N, at water depth between 7445-8023 m below sea level. These offshore expedition achievements reveal the first high-temporal and high spatial resolution investigation and sampling of a hadal oceanic trench, that form the deepest and least explored environments on our planet. The cores are currently being examined by multimethod applications to characterize and date hadal trench sediments and extreme event deposits, for which the detailed sedimentological, physical and (bio-)geochemical features, stratigraphic expressions and spatiotemporal distribution will be analyzed for proxy evidence of giant earthquakes and (bio-)geochemical cycling in deep sea sediments. Initial preliminary results presented in this EGU presentation reveal event-stratigraphic successions comprising several 10s of potentially giant-earthquake related event beds, revealing a fascinating record that will unravel the earthquake history of the different along-strike segments that is 10–100 times longer than currently available information. Post-Expedition research projects further analyzing these initial IODP data sets will (i) enable statistically robust assessment of the recurrence patterns of giant earthquakes, there while advancing our understanding of earthquake induced geohazards along subduction zones and (ii) provide new constraints on sediment and carbon flux of event-triggered sediment mobilization to a deep-sea trench and its influence on the hadal environment. IODP Expedition 386 Science Party: Piero Bellanova; Morgane Brunet; Zhirong Cai; Antonio Cattaneo; Tae Soo Chang; Kanhsi Hsiung; Takashi Ishizawa; Takuya Itaki; Kana Jitsuno; Joel Johnson; Toshiya Kanamatsu; Myra Keep; Arata Kioka; Christian Maerz; Cecilia McHugh; Aaron Micallef; Luo Min; Dhananjai Pandey; Jean Noel Proust; Troy Rasbury; Natascha Riedinger; Rui Bao; Yasufumi Satoguchi; Derek Sawyer; Chloe Seibert; Maxwell Silver; Susanne Straub; Joonas Virtasalo; Yonghong Wang; Ting-Wei Wu; Sarah Zellers 
    more » « less
  4. Abstract

    Northern Mexico is home to more than 32 million people and is of significant agricultural and economic importance for the country. The region includes three distinct hydroclimatic regions, all of which regularly experience severe dryness and flooding and are highly susceptible to future changes in precipitation. To date, little work has been done to characterize future trends in either mean or extreme precipitation over northern Mexico. To fill this gap, we investigate projected precipitation trends over the region in the NA-CORDEX ensemble of dynamically downscaled simulations. We first verify that these simulations accurately reproduce observed precipitation over northern Mexico, as derived from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) product, demonstrating that the NA-CORDEX ensemble is appropriate for studying precipitation trends over the region. By the end of the century, simulations forced with a high-emissions scenario project that both mean and extreme precipitation will decrease to the west and increase to the east of the Sierra Madre highlands, decreasing the zonal gradient in precipitation. We also find that the North American monsoon, which is responsible for a substantial fraction of the precipitation over the region, is likely to start later and last approximately three weeks longer. The frequency of extreme precipitation events is expected to double throughout the region, exacerbating the flood risk for vulnerable communities in northern Mexico. Collectively, these results suggest that the extreme precipitation-related dangers that the region faces, such as flooding, will increase significantly by the end of the century, with implications for the agricultural sector, economy, and infrastructure.

    Significance Statement

    Northern Mexico regularly experiences severe flooding and its important agricultural sector can be heavily impacted by variations in precipitation. Using high-resolution climate model simulations that have been tested against observations, we find that these hydroclimate extremes are likely to be exacerbated in a warming climate; the dry (wet) season is projected to receive significantly less (more) precipitation (approximately ±10% by the end of the century). Simulations suggest that some of the changes in precipitation over the region can be related to the North American monsoon, with the monsoon starting later in the year and lasting several weeks longer. Our results also suggest that the frequency of extreme precipitation will increase, although this increase is smaller than that projected for other regions, with the strongest storms becoming 20% more frequent per degree of warming. These results suggest that this region may experience significant changes to its hydroclimate through the end of the century that will require significant resilience planning.

     
    more » « less
  5. Abstract Intensity–duration–frequency (IDF) analyses of rainfall extremes provide critical information to mitigate, manage, and adapt to urban flooding. The accuracy and uncertainty of IDF analyses depend on the availability of historical rainfall records, which are more accessible at daily resolution and, quite often, are very sparse in developing countries. In this work, we quantify performances of different IDF models as a function of the number of available high-resolution (Nτ) and daily (N24h) rain gauges. For this aim, we apply a cross-validation framework that is based on Monte Carlo bootstrapping experiments on records of 223 high-resolution gauges in central Arizona. We test five IDF models based on (two) local, (one) regional, and (two) scaling frequency analyses of annual rainfall maxima from 30-min to 24-h durations with the generalized extreme value (GEV) distribution. All models exhibit similar performances in simulating observed quantiles associated with return periods up to 30 years. When Nτ > 10, local and regional models have the best accuracy; bias correcting the GEV shape parameter for record length is recommended to estimate quantiles for large return periods. The uncertainty of all models, evaluated via Monte Carlo experiments, is very large when Nτ ≤ 5; however, if N24h ≥ 10 additional daily gauges are available, the uncertainty is greatly reduced and accuracy is increased by applying simple scaling models, which infer estimates on subdaily rainfall statistics from information at daily scale. For all models, performances depend on the ability to capture the elevation control on their parameters. Although our work is site specific, its results provide insights to conduct future IDF analyses, especially in regions with sparse data. 
    more » « less