skip to main content


Title: Projected Changes in Mean and Extreme Precipitation over Northern Mexico
Abstract

Northern Mexico is home to more than 32 million people and is of significant agricultural and economic importance for the country. The region includes three distinct hydroclimatic regions, all of which regularly experience severe dryness and flooding and are highly susceptible to future changes in precipitation. To date, little work has been done to characterize future trends in either mean or extreme precipitation over northern Mexico. To fill this gap, we investigate projected precipitation trends over the region in the NA-CORDEX ensemble of dynamically downscaled simulations. We first verify that these simulations accurately reproduce observed precipitation over northern Mexico, as derived from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) product, demonstrating that the NA-CORDEX ensemble is appropriate for studying precipitation trends over the region. By the end of the century, simulations forced with a high-emissions scenario project that both mean and extreme precipitation will decrease to the west and increase to the east of the Sierra Madre highlands, decreasing the zonal gradient in precipitation. We also find that the North American monsoon, which is responsible for a substantial fraction of the precipitation over the region, is likely to start later and last approximately three weeks longer. The frequency of extreme precipitation events is expected to double throughout the region, exacerbating the flood risk for vulnerable communities in northern Mexico. Collectively, these results suggest that the extreme precipitation-related dangers that the region faces, such as flooding, will increase significantly by the end of the century, with implications for the agricultural sector, economy, and infrastructure.

Significance Statement

Northern Mexico regularly experiences severe flooding and its important agricultural sector can be heavily impacted by variations in precipitation. Using high-resolution climate model simulations that have been tested against observations, we find that these hydroclimate extremes are likely to be exacerbated in a warming climate; the dry (wet) season is projected to receive significantly less (more) precipitation (approximately ±10% by the end of the century). Simulations suggest that some of the changes in precipitation over the region can be related to the North American monsoon, with the monsoon starting later in the year and lasting several weeks longer. Our results also suggest that the frequency of extreme precipitation will increase, although this increase is smaller than that projected for other regions, with the strongest storms becoming 20% more frequent per degree of warming. These results suggest that this region may experience significant changes to its hydroclimate through the end of the century that will require significant resilience planning.

 
more » « less
Award ID(s):
2023483
NSF-PAR ID:
10495595
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
8
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 2405-2422
Size(s):
p. 2405-2422
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The northeastern United States (NEUS) is a densely populated region with a number of major cities along the climatological storm track. Despite its economic and social importance, as well as the area’s vulnerability to flooding, there is significant uncertainty around future trends in extreme precipitation over the region. Here, we undertake a regional study of the projected changes in extreme precipitation over the NEUS through the end of the twenty-first century using an ensemble of high-resolution, dynamically downscaled simulations from the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) project. We find that extreme precipitation increases throughout the region, with the largest changes in coastal regions and smaller changes inland. These increases are seen throughout the year, although the smallest changes in extreme precipitation are seen in the summer, in contrast to earlier studies. The frequency of heavy precipitation also increases such that there are relatively fewer days with moderate precipitation and relatively more days with either no or strong precipitation. Averaged over the region, extreme precipitation increases by +3%–5% °C−1of local warming, with the largest fractional increases in southern and inland regions and occurring during the winter and spring seasons. This is lower than the +7% °C−1rate expected from thermodynamic considerations alone and suggests that dynamical changes damp the increases in extreme precipitation. These changes are qualitatively robust across ensemble members, although there is notable intermodel spread associated with models’ climate sensitivity and with changes in mean precipitation. Together, the NA-CORDEX simulations suggest that this densely populated region may require significant adaptation strategies to cope with the increase in extreme precipitation expected at the end of the next century.

    Significance Statement

    Observations show that the northeastern United States has already experienced increases in extreme precipitation, and prior modeling studies suggest that this trend is expected to continue through the end of the century. Using high-resolution climate model simulations, we find that coastal regions will experience large increases in extreme precipitation (+6.0–7.5 mm day−1), although there is significant intermodel spread in the trends’ spatial distribution and in their seasonality. Regionally averaged, extreme precipitation will increase at a rate of ∼2% decade−1. Our results also suggest that the frequency of extreme precipitation will increase, with the strongest storms doubling in frequency per degree of warming. These results, taken with earlier studies, provide guidance to aid in resiliency preparation and planning by regional stakeholders.

     
    more » « less
  2. Abstract

    Geoengineering methods could potentially offset aspects of greenhouse gas‐driven climate change. However, before embarking on any such strategy, a comprehensive understanding of its impacts must be obtained. Here, a 20‐member ensemble of simulations with the Community Earth System Model with the Whole Atmosphere Community Climate Model as its atmospheric component is used to investigate the projected hydroclimate changes that occur when greenhouse gas‐driven warming, under a high emissions scenario, is offset with stratospheric aerosol geoengineering. Notable features of the late 21st century hydroclimate response, relative to present day, include a reduction in precipitation in the Indian summer monsoon, over much of Africa, Amazonia and southern Chile and a wintertime precipitation reduction over the Mediterranean. Over most of these regions, the soil desiccation that occurs with global warming is, however, largely offset by the geoengineering. A notable exception is India, where soil desiccation and an approximate doubling of the likelihood of monsoon failures occurs. The role of stratospheric heating in the simulated hydroclimate change is determined through additional experiments where the aerosol‐induced stratospheric heating is imposed as a temperature tendency, within the same model, under present day conditions. Stratospheric heating is found to play a key role in many aspects of projected hydroclimate change, resulting in a general wet‐get‐drier, dry‐get‐wetter pattern in the tropics and extratropical precipitation changes through midlatitude circulation shifts. While a rather extreme geoengineering scenario has been considered, many, but not all, of the precipitation features scale linearly with the offset global warming.

     
    more » « less
  3. Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.

     
    more » « less
  4. Abstract

    With continued fossil‐fuel dependence, anthropogenic aerosols over South Asia are projected to increase until the mid‐21st century along with greenhouse gases (GHGs). Using the Community Earth System Model (CESM1) Large Ensemble, we quantify the influence of aerosols and GHGs on South Asian seasonal precipitation patterns over the 21st century under a very high‐emissions (RCP 8.5) trajectory. We find that increasing local aerosol concentrations could continue to suppress precipitation over South Asia in the near‐term, delaying the emergence of precipitation increases in response to GHGs by several decades in the monsoon season and a decade in the post‐monsoon season. Emergence of this wetting signal is expected in both seasons by the mid‐21st century. Our results demonstrate that the trajectory of local aerosols together with GHGs will shape near‐future precipitation patterns over South Asia. Therefore, constraining precipitation response to different trajectories of both forcers is critical for informing near‐term adaptation efforts.

     
    more » « less
  5. Abstract

    Appropriately characterizing future changes in regional-scale precipitation requires assessment of the interactive effect owing to greenhouse gas-induced climate change and the physical growth of the built environment. Here we use a suite of medium resolution (20 km grid spacing) decadal scale simulations conducted with the Weather Research and Forecasting model coupled to an urban canopy parameterization to examine the interplay between end-of-century long-lived greenhouse gas (LLGHG) forcing and urban expansion on continental US (CONUS) precipitation. Our results show that projected changes in extreme precipitation are at least one order of magnitude greater than projected changes in mean precipitation; this finding is geographically consistent over the seven CONUS National Climate Assessment (NCA) regions and between the pair of dynamically downscaled global climate model (GCM) forcings. We show that dynamical downscaling of the Geophysical Fluid Dynamics Laboratory GCM leads to projected end-of-century changes in extreme precipitation that are consistently greater compared to dynamical downscaling of the Community Earth System Model GCM for all regions except the Southeast NCA region. Our results demonstrate that the physical growth of the built environment can either enhance or suppress extreme precipitation across CONUS metropolitan regions. Incorporation of LLGHGs indicates compensating effects between urban environments and greenhouse gases, shifting the probability spectrum toward broad enhancement of extreme precipitation across future CONUS metropolitan areas. Our results emphasize the need for development of management policies that address flooding challenges exacerbated by the twin forcing agents of urban- and greenhouse gas-induced climate change.

     
    more » « less