ABSTRACT Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644
more »
« less
Glass‐transition temperature governs the thermal decrosslinking behavior of Diels–Alder crosslinked polymethacrylate networks
ABSTRACT A series of Diels–Alder (DA) crosslinked polymethacrylate networks covering a broad range of glass‐transition temperatures (Tg) was prepared to establish the relationship between theTgand the thermal decrosslinking behavior of these networks. A series of permanently crosslinked and uncrosslinked analogues were also prepared to better understand the thermoset‐to‐thermoplastic transition occurring in the DA networks at elevated temperatures. The network series were studied using dynamic mechanical analysis, which established an inverse relationship betweenTgand decrosslinking ability. Differential scanning calorimetry confirmed the viability of the DA linkages in all formulations, and a trapping experiment with 9‐anthracenemethanol demonstrated that even the least responsive network was capable of undergoing decrosslinking given appropriate thermal treatment. While polymer chain mobility has long been understood to be a critical factor in healable materials, this work verifies the importance of this parameter in the decrosslinking of DA networks. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 193–203
more »
« less
- Award ID(s):
- 1904631
- PAR ID:
- 10457576
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science
- Volume:
- 58
- Issue:
- 1
- ISSN:
- 2642-4150
- Page Range / eLocation ID:
- p. 193-203
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The utility of the quartz crystal microbalance (QCM) as a high‐frequency rheometer operating at 15 MHz was demonstrated. High‐frequency data obtained from a series of rubbery materials were compared with results obtained from traditional dynamic mechanical analysis (DMA) at much lower frequencies. The high‐frequency data enable meaningful shift factors to be obtained at temperatures much further above glass‐transition temperature (Tg) than would otherwise be possible, giving a more complete picture of the temperature dependence of the viscoelastic properties. The QCM can also be used to quantify mass uptake and changes in viscoelastic properties during sample oxidation. The viscoelastic response spanning the full range of behaviors from the rubber to glassy regimes was found to fit well with a six‐element model consisting of three power‐law springpot elements. One of these elements is particularly sensitive to the behavior in the transition regime where the phase angle is maximized. The value of this quantity is obtained from the maximum phase angle, which can be obtained from a temperature sweep at fixed frequency, proving a means for more detailed frequency‐dependent rheometric information to be obtained from a fixed‐frequency measurement at a range of temperatures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1246–1254more » « less
-
Abstract The synthesis and characterization of a series of polyurethane ionenes using a non‐isocyanate approach is disclosed. Imidazole‐capped, urethane‐containing prepolymers are prepared by first reacting carbonyl diimidazole (CDI) with several poly(propylene glycol) (PPG) diols with variable molecular weight, followed by subsequent reaction with 3‐aminopropylimidazole (API). Polymerization with 1,4‐dibromomethylbenzene followed by anion exchange resulted in the desired polyurethane ionenes bearing the [NTf2] counteranion as a series of viscous liquids. NMR and FTIR spectroscopy are used to characterize the intermediates and final ionenes, including molecular weight determination by end‐group analysis. A single glass transition temperature (Tg), as determined by differential scanning calorimetry (DSC), is observed for each ionene (−38 to −64 °C) with theTgdecreasing with increasing PPG molecular weight. Thermogravimetric analysis (TGA) indicated a two‐step decomposition for each ionene, with the first being degradation of the PPG segment, followed by the urethane/ionic segment. Microphase separation is observed from x‐ray scattering profiles with Bragg distances that increased with increasing PPG molecular weight. Ionic conductivity is found to be inversely dependent upon DSCTgat lower temperatures (RT and below); however, at higher temperatures, conductivity appears to be more dependent upon the ability of ionic aggregates caused by phase separation to interact.more » « less
-
Network polymers of sulfur and poly(4-allyloxystyrene), PAOSx ( x = percent by mass sulfur, where x is varied from 10–99), were prepared by reaction between poly(4-allyloxystyrene) with thermal homolytic ring-opened S 8 in a thiol-ene-type reaction. The extent to which sulfur content and crosslinking influence thermal/mechanical properties was assessed. Network materials having sulfur content below 50% were found to be thermosets, whereas those having >90% sulfur content are thermally healable and remeltable. DSC analysis revealed that low sulfur-content materials exhibited neither a T g nor a T m from −50 to 140 °C, whereas higher sulfur content materials featured T g or T m values that scale with the amount of sulfur. DSC data also revealed that sulfur-rich domains of PAOS90 are comprised of sulfur-crosslinked organic polymers and amorphous sulfur, whereas, sulfur-rich domains in PAOS99 are comprised largely of α-sulfur (orthorhombic sulfur). These conclusions are further corroborated by CS 2 -extraction and analysis of extractable/non-extractable fractions. Calculations based on TGA, FT-IR, H 2 S trapping experiments, CS 2 -extractable mass, and elemental combustion microanalysis data were used to assess the relative percentages of free and crosslinked sulfur and average number of S atoms per crosslink. Dynamic mechanical analyses indicate high storage moduli for PAOS90 and PAOS99 (on the order of 3 and 6 GPa at −37 °C, respectively), with a mechanical T g between −17 °C and 5 °C. A PAOS99 sample retains its full initial mechanical strength after at least 12 pulverization-thermal healing cycles, making it a candidate for facile repair and recyclability.more » « less
-
Abstract The preparation of 0.58 Li2S + 0.315 SiS2+ 0.105 LiPO3glass, and the impacts of polysulfide and P1Pdefect structure impurities on the glass transition temperature (Tg), crystallization temperature (Tc), working range (ΔT≡ Tc‐ Tg), fragility index, and the Raman spectra were evaluated using statistical analysis. In this study, 33 samples of this glass composition were synthesized through melt‐quenching. Thermal analysis was conducted to determine the glass transition temperature, crystallization temperature, working range, and fragility index through differential scanning calorimetry. The quantity of the impurities described above was determined through Raman spectroscopy peak analysis. Elemental sulfur was doped into a glass to quantify the wt% sulfur content in the glasses. Linear regression analysis was conducted to determine the impact of polysulfide impurities and P1Pdefect impurities on the thermal properties. Polysulfide impurities were found to decrease theTgat rate of nearly 12°C per 1 wt% increase in sulfur concentration. The sulfur concentration does not have a statistically significant impact on the other properties (α = 0.05). The P1Pdefect structure appears to decrease the resistance to crystallization of the glass by measurably decreasing the working range of the glasses, but further study is necessary to fully quantify and determine this.more » « less
An official website of the United States government
