ABSTRACT The physical aging behavior, time‐dependent densification, of thin polystyrene (PS) films supported on silicon are investigated using ellipsometry for a large range of molecular weights (MWs) fromMw = 97 to 10,100 kg mol−1. We report an unexpected MW dependence to the physical aging rate ofh < 80‐nm thick films not present in bulk films, where samples made from ultra‐high MWs ≥ 6500 kg mol−1exhibit on average a 45% faster aging response at an aging temperature of 40 °C compared with equivalent films made from (merely) high MWs ≤ 3500 kg mol−1. This MW‐dependent difference in physical aging response indicates that the breadth of the gradient in dynamics originating from the free surface in these thin films is diminished for films of ultra‐high MW PS. In contrast, measures of the film‐average glass transition temperatureTg(h) and effective average film density (molecular packing) show no corresponding change for the same range of film thicknesses, suggesting physical aging may be more sensitive to differences in dynamical gradients. These results contribute to growing literature reports signaling that chain connectivity and entropy play a subtle, but important role in how glassy dynamics are propagated from interfaces. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1224–1238
more »
« less
Validation of quartz crystal rheometry in the megahertz frequency regime
ABSTRACT The utility of the quartz crystal microbalance (QCM) as a high‐frequency rheometer operating at 15 MHz was demonstrated. High‐frequency data obtained from a series of rubbery materials were compared with results obtained from traditional dynamic mechanical analysis (DMA) at much lower frequencies. The high‐frequency data enable meaningful shift factors to be obtained at temperatures much further above glass‐transition temperature (Tg) than would otherwise be possible, giving a more complete picture of the temperature dependence of the viscoelastic properties. The QCM can also be used to quantify mass uptake and changes in viscoelastic properties during sample oxidation. The viscoelastic response spanning the full range of behaviors from the rubber to glassy regimes was found to fit well with a six‐element model consisting of three power‐law springpot elements. One of these elements is particularly sensitive to the behavior in the transition regime where the phase angle is maximized. The value of this quantity is obtained from the maximum phase angle, which can be obtained from a temperature sweep at fixed frequency, proving a means for more detailed frequency‐dependent rheometric information to be obtained from a fixed‐frequency measurement at a range of temperatures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1246–1254
more »
« less
- Award ID(s):
- 1710491
- PAR ID:
- 10461566
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science Part B: Polymer Physics
- Volume:
- 57
- Issue:
- 18
- ISSN:
- 0887-6266
- Page Range / eLocation ID:
- p. 1246-1254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Sulfur and oleic acid, two components of industrial waste/byproducts, were combined in an effort to prepare more sustainable polymeric materials. Zinc oxide was employed to serve the dual role of compatibilizing immiscible sulfur and oleic acid as well as to suppress evolution of toxic H2S gas during reaction at high temperature. The reaction of sulfur, oleic acid, and zinc oxide led to a series of composites,ZOSx(x= wt % sulfur, wherexis 8–99). TheZOSxmaterials ranged from sticky tars to hard solids at room temperature. TheZOSxcompositions were assessed by1H NMR spectrometry, FTIR spectroscopy, and elemental microanalysis. CopolymersZOS59‐99, were further analyzed for thermal and mechanical properties by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Remarkably, evenZOS99, comprising only 1 wt % of zinc oxide/oleic acid (99 wt % S) exhibits at least an eightfold increase in storage modulus compared to sulfur alone. The four solid samples (59–99 wt % S) were thermally healable and readily remeltable with full retention of mechanical durability. These materials represent a valuable proof‐of‐concept for sustainably sourced, recyclable materials from unsaturated fatty acid waste products. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1704–1710more » « less
-
ABSTRACT A series of Diels–Alder (DA) crosslinked polymethacrylate networks covering a broad range of glass‐transition temperatures (Tg) was prepared to establish the relationship between theTgand the thermal decrosslinking behavior of these networks. A series of permanently crosslinked and uncrosslinked analogues were also prepared to better understand the thermoset‐to‐thermoplastic transition occurring in the DA networks at elevated temperatures. The network series were studied using dynamic mechanical analysis, which established an inverse relationship betweenTgand decrosslinking ability. Differential scanning calorimetry confirmed the viability of the DA linkages in all formulations, and a trapping experiment with 9‐anthracenemethanol demonstrated that even the least responsive network was capable of undergoing decrosslinking given appropriate thermal treatment. While polymer chain mobility has long been understood to be a critical factor in healable materials, this work verifies the importance of this parameter in the decrosslinking of DA networks. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 193–203more » « less
-
ABSTRACT Thermomechanical properties of polymers highly depend on their glass transition temperature (Tg). Differential scanning calorimetry (DSC) is commonly used to measureTgof polymers. However, many conjugated polymers (CPs), especially donor–acceptor CPs (D–A CPs), do not show a clear glass transition when measured by conventional DSC using simple heat and cool scan. In this work, we discuss the origin of the difficulty for measuringTgin such type of polymers. The changes in specific heat capacity (Δcp) atTgwere accurately probed for a series of CPs by DSC. The results showed a significant decrease in Δcpfrom flexible polymer (0.28 J g−1K−1for polystyrene) to rigid CPs (10−3J g−1K−1for a naphthalene diimide‐based D–A CP). When a conjugation breaker unit (flexible unit) is added to the D–A CPs, we observed restoration of the ΔcpatTgby a factor of 10, confirming that backbone rigidity reduces the Δcp. Additionally, an increase in the crystalline fraction of the CPs further reduces Δcp. We conclude that the difficulties of determiningTgfor CPs using DSC are mainly due to rigid backbone and semicrystalline nature. We also demonstrate that physical aging can be used on DSC to help locate and confirm the glass transition for D‐A CPs with weak transition signals. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1635–1644more » « less
-
ABSTRACT Ternary block copolymer (BCP)‐homopolymer (HP) blends offer a simple method for tuning nanostructure sizes to meet application‐specific demands. Comprehensive dissipative particle dynamic (DPD) simulations were performed to study the impact of polymer interactions, molecular weight, and HP volume fraction (φHP) on symmetric ternary blend morphological stability and domain spacing. DPD reproduces key features of the experimental phase diagram, including lamellar domain swelling with increasingφHP, the formation of an asymmetric bicontinuous microemulsion at a critical HP concentration , and macrophase separation with further HP addition. Simulation results matched experimental values for and lamellar swelling as a function of HP to BCP chain length ratio,α = NHP/NBCP. Structural analysis of blends with fixedφHPbut varyingαconfirmed that ternary blends follow the wet/dry brush model of domain swelling with the miscibility of HPs and BCPs depending onα. Longer HPs concentrate in the center of domains, boosting their swelling efficiencies compared to shorter chains. These results advance our understanding of BCP‐HP blend phase behavior and demonstrate the value of DPD for studying polymeric blends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 794–803more » « less
An official website of the United States government
