skip to main content


Title: Community structure – Ecosystem function relationships in the Congo Basin methane cycle depend on the physiological scale of function
Abstract

Belowground ecosystem processes can be highly variable and difficult to predict using microbial community data. Here, we argue that this stems from at least three issues: (a) complex covariance structure of samples (with environmental conditions or spatial proximity) can make distinguishing biotic drivers a challenge; (b) communities can control ecosystem processes through multiple mechanisms, making the identification of these controls a challenge; and (c) ecosystem function assessments can be broad in physiological scale, encapsulating multiple processes with unique microbially mediated controls. We test these assertions using methane (CH4)‐cycling processes in soil samples collected along a wetland‐to‐upland habitat gradient in the Congo Basin. We perform our measurements of function under controlled laboratory conditions and statistically control for environmental covariates to aid in identifying biotic drivers. We divide measurements of microbial communities into four attributes (abundance, activity, composition, and diversity) that represent different forms of community control. Lastly, our process measurements differ in physiological scale, including broader processes (gross methanogenesis and methanotrophy) that involve more mediating groups, to finer processes (hydrogenotrophic methanogenesis and high‐affinity CH4oxidation) with fewer mediating groups. We observed that finer scale processes can be more readily predicted from microbial community structure than broader scale processes. In addition, the nature of those relationships differed, with broad processes limited by abundance while fine‐scale processes were associated with diversity and composition. These findings demonstrate the importance of carefully defining the physiological scale of ecosystem function and performing community measurements that represent the range of possible controls on ecosystem processes.

 
more » « less
NSF-PAR ID:
10457612
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
29
Issue:
10
ISSN:
0962-1083
Page Range / eLocation ID:
p. 1806-1819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Water table depth and vegetation are key controls of methane (CH4) emissions from peatlands. Microtopography integrates these factors into features called microforms. Microforms often differ in CH4emissions, but microform‐dependent patterns of belowground CH4cycling remain less clearly resolved. To investigate the impact of microtopography on belowground CH4cycling, we characterized depth profiles of the community composition and activity of CH4‐cycling microbes using 16S rRNA amplicon sequencing, incubations, and measurements of porewater CH4concentration and isotopic composition from hummocks and lawns at Sallie's Fen in NH, USA. Geochemical proxies of methanogenesis and methanotrophy indicated that microforms differ in dominant microbial CH4cycling processes. Hummocks, where water table depth is lower, had higher porewater redox potential (Eh) and higher porewater δ13C‐CH4values in the upper 30 cm than lawns, where water table depth is closer to the peat surface. Porewater δ13C‐CH4and δD‐CH3D values were highest at the surface of hummocks where the ratio of methanotrophs to methanogens was also greatest. These results suggest that belowground CH4cycling in hummocks is more strongly regulated by methanotrophy, while in lawns methanogenesis is more dominant. We also investigated controls of porewater CH4chemistry. The ratio of the relative abundance of methanotrophs to methanogens was the strongest predictor of porewater CH4concentration and δ13C‐CH4, while vegetation composition had minimal influence. As microbial community composition was strongly influenced by redox conditions but not vegetation, we conclude that water table depth is a stronger control of belowground CH4cycling across microforms than vegetation.

     
    more » « less
  2. Abstract

    Tidal salt marshes produce and emit CH4. Therefore, it is critical to understand the biogeochemical controls that regulate CH4spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH4production, and higher salinity concentrations inhibit CH4production in salt marshes. Recent evidence shows that CH4is produced within salt marshes via methylotrophic methanogenesis, a process not inhibited by sulfate reduction. To further explore this conundrum, we performed measurements of soil–atmosphere CH4and CO2fluxes coupled with depth profiles of soil CH4and CO2pore water gas concentrations, stable and radioisotopes, pore water chemistry, and microbial community composition to assess CH4production and fate within a temperate tidal salt marsh. We found unexpectedly high CH4concentrations up to 145,000 μmol mol−1positively correlated with S2−(salinity range: 6.6–14.5 ppt). Despite large CH4production within the soil, soil–atmosphere CH4fluxes were low but with higher emissions and extreme variability during plant senescence (84.3 ± 684.4 nmol m−2 s−1). CH4and CO2within the soil pore water were produced from young carbon, with most Δ14C‐CH4and Δ14C‐CO2values at or above modern. We found evidence that CH4within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH4is produced, including diffusion into the atmosphere, CH4oxidation, and lateral export to adjacent tidal creeks; the latter being the most likely dominant flux. Our findings demonstrate that CH4production and fluxes are biogeochemically heterogeneous, with multiple processes and pathways that can co‐occur and vary in importance over the year. This study highlights the potential for high CH4production, the need to understand the underlying biogeochemical controls, and the challenges of evaluating CH4budgets and blue carbon in salt marshes.

     
    more » « less
  3. Abstract

    Sea level rise and changes in precipitation can cause saltwater intrusion into historically freshwater wetlands, leading to shifts in microbial metabolism that alter greenhouse gas emissions and soil carbon sequestration. Saltwater intrusion modifies soil physicochemistry and can immediately affect microbial metabolism, but further alterations to biogeochemical processing can occur over time as microbial communities adapt to the changed environmental conditions. To assess temporal changes in microbial community composition and biogeochemical activity due to saltwater intrusion, soil cores were transplanted from a tidal freshwater marsh to a downstream mesohaline marsh and periodically sampled over 1 year. This experimental saltwater intrusion produced immediate changes in carbon mineralization rates, whereas shifts in the community composition developed more gradually. Salinity affected the composition of the prokaryotic community but did not exert a strong influence on the community composition of fungi. After only 1 week of saltwater exposure, carbon dioxide production doubled and methane production decreased by three orders of magnitude. By 1 month, carbon dioxide production in the transplant was comparable to the saltwater controls. Over time, we observed a partial recovery in methane production which strongly correlated with an increase in the relative abundance of three orders of hydrogenotrophic methanogens. Taken together, our results suggest that ecosystem responses to saltwater intrusion are dynamic over time as complex interactions develop between microbial communities and the soil organic carbon pool. The gradual changes in microbial community structure we observed suggest that previously freshwater wetlands may not experience an equilibration of ecosystem function until long after initial saltwater intrusion. Our results suggest that during this transitional period, likely lasting years to decades, these ecosystems may exhibit enhanced greenhouse gas production through greater soil respiration and continued methanogenesis.

     
    more » « less
  4. Abstract

    Understanding microbial roles in ecosystem function requires integrating microscopic processes into food webs. The carnivorous pitcher plant,Sarracenia purpurea, offers a tractable study system where diverse food webs of macroinvertebrates and microbes facilitate digestion of captured insect prey, releasing nutrients supporting the food web and host plant. However, how interactions between these macroinvertebrate and microbial communities contribute to ecosystem functions remains unclear. We examined the role of the pitcher plant mosquito,Wyeomyia smithii, in top‐down control of the composition and function of pitcher plant microbial communities. Mosquito larval abundance was enriched or depleted across a natural population ofS. purpureapitchers over a 74‐day field experiment. Bacterial community composition and microbial community function were characterized by 16S rRNA amplicon sequencing and profiling of carbon substrate use, bulk metabolic rate, hydrolytic enzyme activity, and macronutrient pools. Bacterial communities changed from pitcher opening to maturation, but larvae exerted minor effects on high‐level taxonomic composition. Higher larval abundance was associated with lower diversity communities with distinct functions and elevated nitrogen availability. Treatment‐independent clustering also supported roles for larvae in curating pitcher microbial communities through shifts in community diversity and function. These results demonstrate top‐down control of microbial functions in an aquatic microecosystem.

     
    more » « less
  5. Abstract

    Soil biota are increasingly recognized as a primary control on litter decomposition at both local and regional scales, but the precise mechanisms by which biota influence litter decomposition have yet to be identified.

    There are multiple hypothesized mechanisms by which biotic communities may influence litter decomposition—for example, decomposer communities may be specially adapted to local litter inputs and therefore decompose litter from their home ecosystem at elevated rates. This mechanism is known as the home‐field advantage (HFA) hypothesis. Alternatively, litter decomposition rates may simply depend upon the range of metabolic functions present within a decomposer community. This mechanism is known as the functional breadth (FB) hypothesis. However, the relative importance of HFA and FB in litter decomposition is unknown, as are the microbial community drivers of HFA and FB. Potential relationships/trade‐offs between microbial HFA and FB are also unknown.

    To investigate the roles of HFA and FB in litter decomposition, we collected litter and soil from six different ecosystems across the continental US and conducted a full factorial litter × soil inoculum experiment. We measured litter decomposition (i.e. cumulative CO2‐C respired) over 150 days and used an analytical model to calculate the HFA and FB of each microbial decomposer community.

    Our results indicated clear functional differences among decomposer communities, that is, litter sources were decomposed differently by different decomposer communities. These differences were primarily due to differences in FB between different communities, while HFA effects were less evident.

    We observed a positive relationship between HFA and the disturbance‐sensitive bacterial phylum Verruomicrobia, suggesting that HFA may be an important mechanism in undisturbed environments. We also observed a negative relationship between bacterial r versus K strategists and FB, suggesting an important link between microbial life‐history strategies and litter decomposition functions.

    Microbial FB and HFA exhibited a strong unimodal relationship, where high HFA was observed at intermediate FB values, while low HFA was associated with both low and high FB. This suggests that adaptation of decomposers to local plant inputs (i.e. high HFA) constrains FB, which requires broad rather than specialized functionality. Furthermore, this relationship suggests that HFA effects will not be apparent when communities exhibit high FB and therefore decompose all litters well and also when FB is low and communities decompose all litters poorly. Overall, our study provides new insights into the mechanisms by which microbial communities influence the decomposition of leaf litter.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less