skip to main content

Title: Evaluating the roles of microbial functional breadth and home‐field advantage in leaf litter decomposition

Soil biota are increasingly recognized as a primary control on litter decomposition at both local and regional scales, but the precise mechanisms by which biota influence litter decomposition have yet to be identified.

There are multiple hypothesized mechanisms by which biotic communities may influence litter decomposition—for example, decomposer communities may be specially adapted to local litter inputs and therefore decompose litter from their home ecosystem at elevated rates. This mechanism is known as the home‐field advantage (HFA) hypothesis. Alternatively, litter decomposition rates may simply depend upon the range of metabolic functions present within a decomposer community. This mechanism is known as the functional breadth (FB) hypothesis. However, the relative importance of HFA and FB in litter decomposition is unknown, as are the microbial community drivers of HFA and FB. Potential relationships/trade‐offs between microbial HFA and FB are also unknown.

To investigate the roles of HFA and FB in litter decomposition, we collected litter and soil from six different ecosystems across the continental US and conducted a full factorial litter × soil inoculum experiment. We measured litter decomposition (i.e. cumulative CO2‐C respired) over 150 days and used an analytical model to calculate the HFA and FB of each microbial decomposer community.

Our results indicated clear functional differences among decomposer communities, that is, litter sources were decomposed differently by different decomposer communities. These differences were primarily due to differences in FB between different communities, while HFA effects were less evident.

We observed a positive relationship between HFA and the disturbance‐sensitive bacterial phylum Verruomicrobia, suggesting that HFA may be an important mechanism in undisturbed environments. We also observed a negative relationship between bacterial r versus K strategists and FB, suggesting an important link between microbial life‐history strategies and litter decomposition functions.

Microbial FB and HFA exhibited a strong unimodal relationship, where high HFA was observed at intermediate FB values, while low HFA was associated with both low and high FB. This suggests that adaptation of decomposers to local plant inputs (i.e. high HFA) constrains FB, which requires broad rather than specialized functionality. Furthermore, this relationship suggests that HFA effects will not be apparent when communities exhibit high FB and therefore decompose all litters well and also when FB is low and communities decompose all litters poorly. Overall, our study provides new insights into the mechanisms by which microbial communities influence the decomposition of leaf litter.

Read the freePlain Language Summaryfor this article on the Journal blog.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Functional Ecology
Page Range / eLocation ID:
p. 1258-1267
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Litter decomposition facilitates the recycling of often limiting resources, which may promote plant productivity responses to diversity, that is, overyielding. However, the direct relationship between decomposition,k, and overyielding remains underexplored in grassland diversity manipulations.

    We test whether local adaptation of microbes, that is, home‐field advantage (HFA), N‐priming from plant inputs or precipitation drive decomposition and whether decomposition generates overyielding. Within a grassland diversity‐manipulation, altering plant richness (1, 2, 3 and 6 species), composition (communities composed of plants from a single‐family or multiple‐families) and precipitation (50% and 150% ambient growing season precipitation), we conducted a litter decomposition experiment. In spring 2020, we deployed four replicate switchgrass,Panicum virgatum, litter bags (1.59 mm mesh opening), collecting them over 7 months to estimate litterk.

    Precipitation was a strong, independent driver of decomposition. Switchgrass decomposition accelerated with grass richness and decelerated as phylogenetic dissimilarity from switchgrass increased, suggesting decomposition is fastest at ‘home’. However, decomposition slowed with switchgrass density. In plots that contained switchgrass, we observed no relationship between decomposition and fungal saprotroph dissimilarity from switchgrass. However, in plots without switchgrass, decomposition slowed with increasing saprotroph dissimilarity from switchgrass. Combined these findings suggest that HFA is strongest when closely related neighbours, that is, heterospecific neighbours, are present in the community, rather than other individuals of the same species, that is, conspecifics. Legumes accelerated decomposition with more litter N remaining in those plots, suggesting that N‐inputs from planted legumes are priming decomposition of litter C. However, decomposition and overyielding were unrelated in legume communities. While in grass communities, overyielding and decomposition were positively related and the relationship was strongest in plots with low densities of switchgrass, that is, with heterospecific neighbours.

    Combined these findings suggest that plant species richness and community composition stimulate litter decomposition through multiple mechanisms, including N‐priming, but only HFA from local adaptation of microbes on closely related species correlates with overyielding, likely through resource recycling. Our results link diversity with ecosystem processes facilitating above‐ground productivity. Whether diversity loss will affect litter decomposition, productivity or both is contingent on resident plant traits and whether a locally adapted soil microbiome is maintained.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  2. Summary

    Pyrogenic savannas with a tree–grassland ‘matrix’ experience frequent fires (i.e. every 1–3 yr). Aboveground responses to frequent fires have been well studied, but responses of fungal litter decomposers, which directly affect fuels, remain poorly known. We hypothesized that each fire reorganizes belowground communities and slows litter decomposition, thereby influencing savanna fuel dynamics.

    In a pine savanna, we established patches near and away from pines that were either burned or unburned in that year. Within patches, we assessed fungal communities and microbial decomposition of newly deposited litter. Soil variables and plant communities were also assessed as proximate drivers of fungal communities.

    Fungal communities, but not soil variables or vegetation, differed substantially between burned and unburned patches. Saprotrophic fungi dominated in unburned patches but decreased in richness and relative abundance after fire. Differences in fungal communities with fire were greater in litter than in soils, but unaffected by pine proximity. Litter decomposed more slowly in burned than in unburned patches.

    Fires drive shifts between fire‐adapted and sensitive fungal taxa in pine savannas. Slower fuel decomposition in accordance with saprotroph declines should enhance fuel accumulation and could impact future fire characteristics. Thus, fire reorganization of fungal communities may enhance persistence of these fire‐adapted ecosystems.

    more » « less
  3. Abstract

    Litter decomposition plays a central role in carbon cycling in terrestrial ecosystems worldwide. In drylands, which cover 40% of the Earth's land surface, photodegradation and biotic decomposition driven by non‐rainfall moisture are important mechanisms of litter decay, though studies have only recently begun examining interactions between these two processes. We describe a novel priming mechanism in which photodegradation and biotic decay of the cuticle of plant litter increase litter absorption of non‐rainfall moisture (fog, dew and water vapor), supporting greater microbial decomposition.

    We used several field experiments in a coastal fog desert and a series of in situ observations to demonstrate a relationship between solar radiation, cuticle integrity, water absorption rates and mass loss.

    Experimentally attenuating solar radiation for 36 months slowed mass loss, reduced cuticle degradation and decreased litter moisture uptake relative to litter under ambient sunlight controls. In a separate field experiment, removing the cuticle of recently senesced grass tillers increased mass loss fourfold over 6 months relative to controls. Tillers with degraded cuticles also absorbed 3.8 times more water following an overnight dew event than did those with intact cuticles. Finally, fungal growth was consistently greater on the sun‐facing side of in situ tillers than on the shaded side, coincident with greater cuticle degradation.

    We present a conceptual model where the cuticle of plant litter acts as a water‐resistant barrier that is first degraded by solar radiation and surficial microbes, increasing litter's ability to absorb enough water during non‐rainfall moisture events to support substantial biotic decomposition inside the tissue. Considering how photodegradation and non‐rainfall moisture are both substantial drivers of litter decomposition in drylands, understanding how they interact under realistic field conditions will help us better predict how these systems are responding to changing climate regimes.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  4. Abstract

    Decomposition is a major component of global carbon cycling. However, approximately 50% of wood necromass and a small proportion of leaf litter do not contact the forest floor, and the factors that regulate the decomposition above the forest floor are largely untested. We hypothesized that separation from soil resources causes slower decomposition rates above the forest floor. Specifically, we tested whether slower decomposition results from decreased nutrient availability (the nutrient limitation hypothesis) and/or microbial dispersal limitation (the dispersal limitation hypothesis) in the absence of soil resources.

    We tested these hypotheses by combining experimental manipulations of epiphytes and macronutrient fertilization with elemental analyses and community metabarcoding (fungi and prokaryotes). Specifically, we compared wood stick and cellulose decomposition among three treatments: an unaltered trunk section, an epiphyte mat, and a ‘removal treatment’ where an epiphyte mat was removed to test the effect of soil resources. We also performed a factorial fertilization experiment to test the effects of nitrogen (N) and phosphorus (P) on the decomposition of suspended cellulose.

    Decomposition rates were fastest on the epiphyte mats, intermediate in the removal treatment and slowest in the controls. Phosphorus addition increased decomposition rates in the fertilization experiment, and greater P concentrations, along with some micronutrients, were associated with increased rates of decomposition on the epiphyte mats and in the removal treatments. Locally dispersed fungi dominated the wood stick communities, indicating that fungal dispersal is limited in the canopy, and fungal saprotrophs were associated with increased rates of decomposition on the epiphytes.

    These experiments show that slowed decomposition above the forest floor is caused, in part, by separation from soil resources. Moreover, our findings provide support for both the nutrient limitation and dispersal limitation hypotheses and indicate that mechanisms regulating canopy‐level decomposition differ from those documented on the forest floor. This demonstrates the need for a holistic approach to decomposition that considers the vertical position of necromass as it decomposes. Further experimentation is necessary to quantify interactions between community assembly processes, nutrient availability, substrate traits, and microclimate.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less
  5. Abstract Bark decomposition is an underexamined component of soil carbon cycling and soil community assembly. Numerous studies have shown faster decomposition of leaf litter in “home” environments (i.e. within soil adjacent to the plant that produced the leaves), suggesting potential legacy effects from previous deposition of similar litter. This is expected to occur through, in part, accumulation of microorganisms that metabolize substrates the litter provides. Whether a similar “home-field advantage” (HFA) exists for bark decomposition is unknown, but this dynamic may differ because annual bark deposits to soil are minimal relative to leaf deposits. We hypothesized that (1) as with leaf litter, bark will be better decomposed near to the tree from which it was collected, and (2) that decomposing bark can initiate change in soil microbial composition. To test these hypotheses, we used a full factorial design that included two bark types (collected from eastern hemlock, Tsuga canadensis , and white oak, Quercus alba ) and two soil types (‘home’ and ‘away’) within a temperate mixed hardwood forest at the Shale Hills Catchment in central Pennsylvania, USA. Bark was excised from 25 replicates of each tree type, buried in either home or away soil, and incubated belowground from July 2017 to June 2018. Decomposition was assessed through proportionate mass loss over time, while microbial composition in the bark and adjacent soil was assessed through high-throughput sequencing of 16S rRNA gene and fungal ITS fragments. Overall, bark degraded faster in white oak soils, and there was also an effect of bark type on decomposition. Although white oak bark decomposed more quickly in its home environment, this could be due to either soil conditioning or inherent differences in the soils in which each species grows. Soil microbial assemblages also sorted according to bark type rather than soil type, suggesting that bark strongly influences the composition of nearby microorganisms during decomposition. Our results suggest that both bark type and soil type are important factors during bark decomposition, but our findings suggest no clear evidence for HFA. 
    more » « less