skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Control problems for energy harvester model and interpolation in Hardy space
Abstract Three control problems for the system of two coupled differential equations governing the dynamics of an energy harvesting model are studied. The system consists of the equation of an Euler–Bernoulli beam model and the equation representing the Kirchhoff's electric circuit law. Both equations contain coupling terms representing the inverse and direct piezoelectric effects. The system is reformulated as a single evolution equation in the state space of 3‐component functions. The control is introduced as a separable forcing term on the right‐hand side of the operator equation. The first control problem deals with an explicit construction of that steers an initial state to zero on a time interval [0,T]. The second control problem deals with the construction of such that the voltage output is equal to some given function (with being given as well). The third control problem deals with an explicit construction of both the force profile, , and the control, , which generate the desired voltage output . Interpolation theory in the Hardy space of analytic functions is used in the solution of the second and third problems.  more » « less
Award ID(s):
1810826
PAR ID:
10457689
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Mathematische Nachrichten
Volume:
293
Issue:
3
ISSN:
0025-584X
Page Range / eLocation ID:
p. 585-610
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mathematical analysis of the well known model of a piezoelectric energy harvester is presented. The harvester is designed as a cantilever Timoshenko beam with piezoelectric layers attached to its top and bottom faces. Thin, perfectly conductive electrodes are covering the top and bottom faces of the piezoelectric layers. These electrodes are connected to a resistive load. The model is governed by a system of three partial differential equations. The first two of them are the equations of the Timoshenko beam model and the third one represents Kirchhoff’s law for the electric circuit. All equations are coupled due to the piezoelectric effect. We represent the system as a single operator evolution equation in the Hilbert state space of the system. The dynamics generator of this evolution equation is a non-selfadjoint matrix differential operator with compact resolvent. The paper has two main results. Both results are explicit asymptotic formulas for eigenvalues of this operator, i.e., the modal analysis for the electrically loaded system is performed. The first set of the asymptotic formulas has remainder terms of the order O ( 1 n ) , where n is the number of an eigenvalue. These formulas are derived for the model with variable physical parameters. The second set of the asymptotic formulas has remainder terms of the order O ( 1 n 2 ) , and is derived for a less general model with constant parameters. This second set of formulas contains extra term depending on the electromechanical parameters of the model. It is shown that the spectrum asymptotically splits into two disjoint subsets, which we call the α -branch eigenvalues and the θ -branch eigenvalues. These eigenvalues being multiplied by “i” produce the set of the vibrational modes of the system. The α -branch vibrational modes are asymptotically located on certain vertical line in the left half of the complex plane and the θ -branch is asymptotically close to the imaginary axis. By having such spectral and asymptotic results, one can derive the asymptotic representation for the mode shapes and for voltage output. Asymptotics of vibrational modes and mode shapes is instrumental in the analysis of control problems for the harvester. 
    more » « less
  2. We consider the linearized third order SMGTJ equation defined on a sufficiently smooth boundary domain in and subject to either Dirichlet or Neumann rough boundary control. Filling a void in the literature, we present a direct general system approach based on the vector state solution {position, velocity, acceleration}. It yields, in both cases, an explicit representation formula: input solution, based on the s.c. group generator of the boundary homogeneous problem and corresponding elliptic Dirichlet or Neumann map. It is close to, but also distinctly and critically different from, the abstract variation of parameter formula that arises in more traditional boundary control problems for PDEs L‐T.6. Through a duality argument based on this explicit formula, we provide a new proof of the optimal regularity theory: boundary control {position, velocity, acceleration} with low regularity boundary control, square integrable in time and space. 
    more » « less
  3. In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations. 
    more » « less
  4. We construct an abstract framework in which the dynamic programming principle (DPP) can be readily proven. It encompasses a broad range of common stochastic control problems in the weak formulation, and deals with problems in the “martingale formulation” with particular ease. We give two illustrations; first, we establish the DPP for general controlled diffusions and show that their value functions are viscosity solutions of the associated Hamilton–Jacobi–Bellman equations under minimal conditions. After that, we show how to treat singular control on the example of the classical monotone-follower problem. 
    more » « less
  5. Modern control theory provides us with a spectrum of methods for studying the interconnection of dynamic systems using input-output properties of the interconnected subsystems. Perhaps the most advanced framework for such inputoutput analysis is the use of Integral Quadratic Constraints (IQCs), which considers the interconnection of a nominal linear system with an unmodelled nonlinear or uncertain subsystem with known input-output properties. Although these methods are widely used for Ordinary Differential Equations (ODEs), there have been fewer attempts to extend IQCs to infinitedimensional systems. In this paper, we present an IQC-based framework for Partial Differential Equations (PDEs) and Delay Differential Equations (DDEs). First, we introduce infinitedimensional signal spaces, operators, and feedback interconnections. Next, in the main result, we propose a formulation of hard IQC-based input-output stability conditions, allowing for infinite-dimensional multipliers. We then show how to test hard IQC conditions with infinite-dimensional multipliers on a nominal linear PDE or DDE system via the Partial Integral Equation (PIE) state-space representation using a sufficient version of the Kalman-Yakubovich-Popov lemma (KYP). The results are then illustrated using four example problems with uncertainty and nonlinearity. 
    more » « less