Mathematical analysis of the well known model of a piezoelectric energy harvester is presented. The harvester is designed as a cantilever Timoshenko beam with piezoelectric layers attached to its top and bottom faces. Thin, perfectly conductive electrodes are covering the top and bottom faces of the piezoelectric layers. These electrodes are connected to a resistive load. The model is governed by a system of three partial differential equations. The first two of them are the equations of the Timoshenko beam model and the third one represents Kirchhoff’s law for the electric circuit. All equations are coupled due to the piezoelectric effect. We represent the system as a single operator evolution equation in the Hilbert state space of the system. The dynamics generator of this evolution equation is a non-selfadjoint matrix differential operator with compact resolvent. The paper has two main results. Both results are explicit asymptotic formulas for eigenvalues of this operator, i.e., the modal analysis for the electrically loaded system is performed. The first set of the asymptotic formulas has remainder terms of the order O ( 1 n ) , where n is the number of an eigenvalue. These formulas are derived for the model with variable physical parameters. The second set of the asymptotic formulas has remainder terms of the order O ( 1 n 2 ) , and is derived for a less general model with constant parameters. This second set of formulas contains extra term depending on the electromechanical parameters of the model. It is shown that the spectrum asymptotically splits into two disjoint subsets, which we call the α -branch eigenvalues and the θ -branch eigenvalues. These eigenvalues being multiplied by “i” produce the set of the vibrational modes of the system. The α -branch vibrational modes are asymptotically located on certain vertical line in the left half of the complex plane and the θ -branch is asymptotically close to the imaginary axis. By having such spectral and asymptotic results, one can derive the asymptotic representation for the mode shapes and for voltage output. Asymptotics of vibrational modes and mode shapes is instrumental in the analysis of control problems for the harvester.
more »
« less
Control problems for energy harvester model and interpolation in Hardy space
Abstract Three control problems for the system of two coupled differential equations governing the dynamics of an energy harvesting model are studied. The system consists of the equation of an Euler–Bernoulli beam model and the equation representing the Kirchhoff's electric circuit law. Both equations contain coupling terms representing the inverse and direct piezoelectric effects. The system is reformulated as a single evolution equation in the state space of 3‐component functions. The control is introduced as a separable forcing term on the right‐hand side of the operator equation. The first control problem deals with an explicit construction of that steers an initial state to zero on a time interval [0,T]. The second control problem deals with the construction of such that the voltage output is equal to some given function (with being given as well). The third control problem deals with an explicit construction of both the force profile, , and the control, , which generate the desired voltage output . Interpolation theory in the Hardy space of analytic functions is used in the solution of the second and third problems.
more »
« less
- Award ID(s):
- 1810826
- PAR ID:
- 10457689
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Mathematische Nachrichten
- Volume:
- 293
- Issue:
- 3
- ISSN:
- 0025-584X
- Page Range / eLocation ID:
- p. 585-610
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the linearized third order SMGTJ equation defined on a sufficiently smooth boundary domain in and subject to either Dirichlet or Neumann rough boundary control. Filling a void in the literature, we present a direct general system approach based on the vector state solution {position, velocity, acceleration}. It yields, in both cases, an explicit representation formula: input solution, based on the s.c. group generator of the boundary homogeneous problem and corresponding elliptic Dirichlet or Neumann map. It is close to, but also distinctly and critically different from, the abstract variation of parameter formula that arises in more traditional boundary control problems for PDEs L‐T.6. Through a duality argument based on this explicit formula, we provide a new proof of the optimal regularity theory: boundary control {position, velocity, acceleration} with low regularity boundary control, square integrable in time and space.more » « less
-
In this article, we provide an original systematic global-in-time analysis of mean field type control problems on ℝnwith generic cost functions allowing quadratic growth by a novel “lifting” approach which is not the same as the traditional lifting. As an alternative to the recent popular analytical method of tackling master equations, we resolve the control problem in a proper Hilbert subspace of the whole space ofL2random variables, it can be regarded as a tangent space attached at the initial probability measure. The problem is linked to the global solvability of the Hilbert-space-valued forward–backward stochastic differential equation (FBSDE), which is solved by variational techniques here. We also rely on the Jacobian flow of the solution to this FBSDE to establish the regularity of the value function, including its linearly functional differentiability, which leads to the classical wellposedness of the Bellman equation. Together with the linear functional derivatives and the gradient of the linear functional derivatives of the solution to the FBSDE, we also obtain the classical wellposedness of the master equation. Our current approach imposes structural conditions directly on the cost functions. The contributions of adopting this framework in our study are twofold: (i) compared with imposing conditions on Hamiltonian, the structural conditions imposed in this work are easily verified, and less demanding on the cost functions while solving the master equation; and (ii) when the cost functions are not convex in the state variable or there is a lack of monotonicity of cost functions, an accurate lifespan can be provided for the local existence, which may not be that small in many cases.more » « less
-
In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations.more » « less
-
In this paper, we study the maximum principle of mean field type control problems when the volatility function depends on the state and its measure and also the control, by using our recently developed method in [Bensoussan, A., Huang, Z. and Yam, S. C. P. [2023] Control theory on Wasserstein space: A new approach to optimality conditions, Ann. Math. Sci. Appl.; Bensoussan, A., Tai, H. M. and Yam, S. C. P. [2023] Mean field type control problems, some Hilbert-space-valued FBSDEs, and related equations, preprint (2023), arXiv:2305.04019; Bensoussan, A. and Yam, S. C. P. [2019] Control problem on space of random variables and master equation, ESAIM Control Optim. Calc. Var. 25, 10]. Our method is to embed the mean field type control problem into a Hilbert space to bypass the evolution in the Wasserstein space. We here give a necessary condition and a sufficient condition for these control problems in Hilbert spaces, and we also derive a system of forward–backward stochastic differential equations.more » « less
An official website of the United States government
