skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID ‐19
Abstract We present a stochastic optimization model for allocating and sharing a critical resource in the case of a pandemic. The demand for different entities peaks at different times, and an initial inventory for a central agency are to be allocated. The entities (states) may share the critical resource with a different state under a risk‐averse condition. The model is applied to study the allocation of ventilator inventory in the COVID‐19 pandemic by FEMA to different U.S. states. Findings suggest that if less than 60% of the ventilator inventory is available for non‐COVID‐19 patients, FEMA's stockpile of 20 000 ventilators (as of March 23, 2020) would be nearly adequate to meet the projected needs in slightly above average demand scenarios. However, when more than 75% of the available ventilator inventory must be reserved for non‐COVID‐19 patients, various degrees of shortfall are expected. In a severe case, where the demand is concentrated in the top‐most quartile of the forecast confidence interval and states are not willing to share their stockpile of ventilators, the total shortfall over the planning horizon (until May 31, 2020) is about 232 000 ventilator days, with a peak shortfall of 17 200 ventilators on April 19, 2020. Results are also reported for a worst‐case where the demand is at the upper limit of the 95% confidence interval. An important finding of this study is that a central agency (FEMA) can act as a coordinator for sharing critical resources that are in short supply over time to add efficiency in the system. Moreover, through properly managing risk‐aversion of different entities (states) additional efficiency can be gained. An additional implication is that ramping up production early in the planning cycle allows to reduce shortfall significantly. An optimal timing of this production ramp‐up consideration can be based on a cost‐benefit analysis.  more » « less
Award ID(s):
1763035
PAR ID:
10457720
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Naval Research Logistics (NRL)
Volume:
67
Issue:
5
ISSN:
0894-069X
Page Range / eLocation ID:
p. 303-320
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Larremore, Daniel B (Ed.)
    During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and government entities led by the Centers for Disease Control and Prevention and the US COVID-19 Forecast Hub (https://covid19forecasthub.org). We evaluated approximately 9.7 million forecasts of weekly state-level COVID-19 cases for predictions 1–4 weeks into the future submitted by 24 teams from August 2020 to December 2021. We assessed coverage of central prediction intervals and weighted interval scores (WIS), adjusting for missing forecasts relative to a baseline forecast, and used a Gaussian generalized estimating equation (GEE) model to evaluate differences in skill across epidemic phases that were defined by the effective reproduction number. Overall, we found high variation in skill across individual models, with ensemble-based forecasts outperforming other approaches. Forecast skill relative to the baseline was generally higher for larger jurisdictions (e.g., states compared to counties). Over time, forecasts generally performed worst in periods of rapid changes in reported cases (either in increasing or decreasing epidemic phases) with 95% prediction interval coverage dropping below 50% during the growth phases of the winter 2020, Delta, and Omicron waves. Ideally, case forecasts could serve as a leading indicator of changes in transmission dynamics. However, while most COVID-19 case forecasts outperformed a naïve baseline model, even the most accurate case forecasts were unreliable in key phases. Further research could improve forecasts of leading indicators, like COVID-19 cases, by leveraging additional real-time data, addressing performance across phases, improving the characterization of forecast confidence, and ensuring that forecasts were coherent across spatial scales. In the meantime, it is critical for forecast users to appreciate current limitations and use a broad set of indicators to inform pandemic-related decision making. 
    more » « less
  2. The surge of covid-19-positive cases and mortality among different communities in the state of Louisiana are concerning. It has affected us in different ways: psychologically, physically (mobility restriction), socially, and economically. It is a global catastrophe and all of us are dealing with multiple challenges due to this. As of 9th April 2023, there are almost 1.6 million covid-19 cases and 18,984 people lost their lives in the state of Louisiana. This pandemic created tremendous pressure in healthcare with an unexpected surge in the demand (more than existing production capability). According to our data, there were 3,022 covid patients hospitalized on 08/17/2021, and there were 571 covid-positive patients on the ventilator on 04/04/2020 on a single day. Louisiana has about 33% black population which is about half of white population of 63.0%. However, the covid infection rate was almost 20.0% higher in the black population compared to the white population. Here, we present a demographic chart, the infection rate, and death by region and race in different communities in Louisiana. 
    more » « less
  3. Volunteered sharing of resources is often observed in response to disaster events. During evacuations the sharing of resources and vehicles is a crucial mechanism for expanding critical capacity and enabling inclusive disaster response. This paper examines the complexity of rideshare decision-making in the wake of simultaneous emergencies. Specifically, the need for physical distancing measures during the coronavirus (COVID-19) pandemic complicates face-to-face resource sharing between strangers. The ability of on-demand ridesharing to provide emergency transportation to individuals without access to alternatives calls for an understanding of how evacuees weigh risks of contagion against benefits of spontaneous resource sharing. In this research, we examine both sociodemographic and situational factors that contribute to a willingness to share flood evacuation rides with strangers during the COVID-19 pandemic. We hypothesize that the willingness to share is significantly correlated with traditional emergency resource sharing motivations and current COVID-19 risk factors. To test these hypotheses, we distributed an online survey during the pandemic surge in July 2020 to 600 individuals in three midwestern and three southern states in the United States with high risk of flooding. We estimate a random parameter multinomial logit model to determine the willingness to share a ride as a driver or passenger. Our findings show that willingness to share evacuation rides is associated with individual sociodemographics (such as being female, under 36 years old, Black, or republican-identifying) and the social environment (such as households with children, social network proximity, and neighborly sharing attitudes). Moreover, our findings suggest higher levels of income, COVID-19 threat perception, evacuation fear, and household preparedness all correspond with a lower willingness to share rides. We discuss the broader implications of emergency on-demand mobility during concurrent disasters to formulate strategies for transportation agencies and on-demand ridehailing providers. 
    more » « less
  4. null (Ed.)
    Abstract Deaths are frequently under-estimated during emergencies, times when accurate mortality estimates are crucial for emergency response. This study estimates excess all-cause, pneumonia and influenza mortality during the coronavirus disease 2019 (COVID-19) pandemic using the 11 September 2020 release of weekly mortality data from the United States (U.S.) Mortality Surveillance System (MSS) from 27 September 2015 to 9 May 2020, using semiparametric and conventional time-series models in 13 states with high reported COVID-19 deaths and apparently complete mortality data: California, Colorado, Connecticut, Florida, Illinois, Indiana, Louisiana, Massachusetts, Michigan, New Jersey, New York, Pennsylvania and Washington. We estimated greater excess mortality than official COVID-19 mortality in the U.S. (excess mortality 95% confidence interval (CI) 100 013–127 501 vs. 78 834 COVID-19 deaths) and 9 states: California (excess mortality 95% CI 3338–6344) vs. 2849 COVID-19 deaths); Connecticut (excess mortality 95% CI 3095–3952) vs. 2932 COVID-19 deaths); Illinois (95% CI 4646–6111) vs. 3525 COVID-19 deaths); Louisiana (excess mortality 95% CI 2341–3183 vs. 2267 COVID-19 deaths); Massachusetts (95% CI 5562–7201 vs. 5050 COVID-19 deaths); New Jersey (95% CI 13 170–16 058 vs. 10 465 COVID-19 deaths); New York (95% CI 32 538–39 960 vs. 26 584 COVID-19 deaths); and Pennsylvania (95% CI 5125–6560 vs. 3793 COVID-19 deaths). Conventional model results were consistent with semiparametric results but less precise. Significant excess pneumonia deaths were also found for all locations and we estimated hundreds of excess influenza deaths in New York. We find that official COVID-19 mortality substantially understates actual mortality, excess deaths cannot be explained entirely by official COVID-19 death counts. Mortality reporting lags appeared to worsen during the pandemic, when timeliness in surveillance systems was most crucial for improving pandemic response. 
    more » « less
  5. null (Ed.)
    Urban nature can alleviate distress and provide space for safe recreation during the COVID-19 pandemic. However, nature is often less available in low-income and communities of color—the same communities hardest hit by COVID-19. We quantified nature inequality across all urbanized areas in the US and linked nature access to COVID-19 case rates for ZIP Codes in 17 states. Areas with majority persons of color had both higher case rates and less greenness. Furthermore, when controlling for socio-demographic variables, an increase of 0.1 in Normalized Difference Vegetation Index (NDVI) was associated with a 4.1% decrease in COVID-19 incidence rates (95% confidence interval: 0.9-6.8%). Across the US, block groups with lower-income and majority persons of color are less green and have fewer parks. Thus, communities most impacted by COVID-19 also have the least nature nearby. Given urban nature is associated with both human health and biodiversity, these results have far-reaching implications both during and beyond the pandemic. 
    more » « less