skip to main content


Title: Full‐Color Complex‐Amplitude Vectorial Holograms Based on Multi‐Freedom Metasurfaces
Abstract

Phase, polarization, amplitude, and frequency represent the basic dimensions of light, playing crucial roles for both fundamental light–material interactions and all major optical applications. Metasurfaces have emerged as a compact platform to manipulate these knobs, but previous metasurfaces have limited flexibility to simultaneous control them. A multi‐freedom metasurface that can simultaneously and independently modulate phase, polarization, and amplitude in an analytical form is introduced, and frequency multiplexing is further realized by ak‐space engineering technique. The multi‐freedom metasurface seamlessly combines geometric Pancharatnam–Berry phase and detour phase, both of which are frequency independent. As a result, it allows complex‐amplitude vectorial hologram at various frequencies based on the same design strategy, without sophisticated nanostructure searching of massive geometric parameters. Based on this principle, full‐color complex‐amplitude vectorial meta‐holograms in the visible are experimentally demonstrated with a metal–insulator–metal architecture, unlocking the long‐sought full potential of advanced light field manipulation through ultrathin metasurfaces.

 
more » « less
NSF-PAR ID:
10457733
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
21
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on intrinsically chiral plasmonic stepped nanoapertures with a simultaneously high circular dichroism in transmission (CDT) and large cross-polarization ratio (CPR) in transmitted light to exhibit spin-controlled wavefront shaping capabilities. The chiral geometric metasurfaces are constructed by merging two independently designed subarrays of the two enantiomers for the stepped nanoaperture. Under a certain incident handedness, the transmission from one subarray is allowed, while the transmission from the other subarray is strongly prohibited. The merged metasurface then only exhibits the transmitted signal with the phase profile of one subarray, which can be switched by changing the incident handedness. Based on the chiral geometric metasurface, both chiral metasurface holograms and the spin-dependent generation of hybrid-order Poincaré sphere beams are experimentally realized. Our approach promises further applications in spin-controlled metasurface devices for complex beam conversion, image processing, optical trapping, and optical communications.

     
    more » « less
  2. Abstract

    Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage.

     
    more » « less
  3. Abstract

    Metasurfaces composed of in‐plane subwavelength nanostructures have unprecedented capability in manipulating the amplitude, phase, and polarization states of light. Here, a unique type of direction‐controlled bifunctional metasurface polarizer is proposed and experimentally demonstrated based on plasmonic stepped slit‐groove dimers. In the forward direction, a chiral linear polarizer is enabled which only allows the transmission of a certain incident handedness and converts it into the specified linear polarization. In the backward direction, the metasurface functions as an anisotropic circular polarizer to selectively convert a certain linear polarization component into the desired circularly polarized transmission. The observed direction‐controlled polarization selection and conversion are explained by the spin‐dependent mode coupling process inside the bilayer structure. Anisotropic chiral imaging based on the proposed metasurface polarizer is further demonstrated. The results provide new degrees of freedom to realize future multifunctional photonic integrated devices for structured light conversion, vector beam generation, optical imaging and sensing, and optical communication.

     
    more » « less
  4. Metasurfaces have been rapidly advancing our command over the many degrees of freedom of light within compact, lightweight devices. However, so far, they have mostly been limited to manipulating light in free space. Grating couplers provide the opportunity of bridging far-field optical radiation and in-plane guided waves, and thus have become fundamental building blocks in photonic integrated circuits. However, their operation and degree of light control is much more limited than metasurfaces. Metasurfaces integrated on top of guided wave photonic systems have been explored to control the scattering of light off-chip with enhanced functionalities – namely, point-by-point manipulation of amplitude, phase or polarization. However, these efforts have so far been limited to controlling one or two optical degrees of freedom at best, and to device configurations much more complex compared to conventional grating couplers. Here, we introduce leaky-wave metasurfaces, which are based on symmetry-broken photonic crystal slabs that support quasi-bound states in the continuum. This platform has a compact form factor equivalent to the one of conventional grating couplers, but it provides full command over amplitude, phase and polarization (four optical degrees of freedom) across large apertures. We present experimental demonstrations of various functionalities for operation at λ= 1.55 μm based on leaky-wave metasurfaces, including devices for phase and amplitude control at a fixed polarization state, and devices controlling all four optical degrees of freedom. Our results merge the fields of guided and free-space optics under the umbrella of metasurfaces, exploiting the hybrid nature of quasi-bound states in the continuum, for opportunities to advance in disruptive ways imaging, communications, augmented reality, quantum optics, LIDAR, and integrated photonic systems. 
    more » « less
  5. This review focuses on the control over the degrees of freedom (DOF) in metasurfaces, which include the input DOF (the polarization, wavelength and incident angle of the input light and some dynamic controls), parameter DOF (the complex geometric design of metasurfaces) and output DOF (the phase, polarization and amplitude of the output light). This framework could clearly show us the development process of metasurfaces, from single-functional to multi-functional ones. Advantages of the multi-functional metasurfaces are discussed in the context of various applications, including 3D holography, broadband achromatic metalenses and multi-dimensional encoded information. By combining all the input and output DOF together, we can realize ideal optical meta-devices with deep subwavelength thickness and striking functions beyond the reach of traditional optical components. Moreover, new research directions may emerge when merging different DOF in metasurfaces with other important concepts, such as parity-time symmetry and topology, so that we can have the complete control of light waves in a prescribed manner. 
    more » « less