Numerical methods are proposed for the nonlinear Stokes‐Biot system modeling interaction of a free fluid with a poroelastic structure. We discuss time discretization and decoupling schemes that allow the fluid and the poroelastic structure computed independently using a common stress force along the interface. The coupled system of nonlinear Stokes and Biot is formulated as a least‐squares problem with constraints, where the objective functional measures violation of some interface conditions. The local constraints, the Stokes and Biot models, are discretized in time using second‐order schemes. Computational algorithms for the least‐squares problems are discussed and numerical results are provided to compare the accuracy and efficiency of the algorithms.
more » « less- Award ID(s):
- 1818842
- NSF-PAR ID:
- 10457737
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Fluids
- Volume:
- 92
- Issue:
- 7
- ISSN:
- 0271-2091
- Page Range / eLocation ID:
- p. 687-702
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We develop and analyze a model for the interaction of a quasi-Newtonian free fluid with a poroelastic medium. The flow in the fluid region is described by the nonlinear Stokes equations and in the poroelastic medium by the nonlinear quasi-static Biot model. Equilibrium and kinematic conditions are imposed on the interface. We establish existence and uniqueness of a solution to the weak formulation and its semidiscrete continuous-in-time finite element approximation. We present error analysis, complemented by numerical experiments.more » « less
-
Abstract This work focuses on modeling the interaction between an incompressible, viscous fluid and a poroviscoelastic material. The fluid flow is described using the time‐dependent Stokes equations, and the poroelastic material using the Biot model. The viscoelasticity is incorporated in the equations using a linear Kelvin–Voigt model. We introduce two novel, noniterative, partitioned numerical schemes for the coupled problem. The first method uses the second‐order backward differentiation formula (BDF2) for implicit integration, while treating the interface terms explicitly using a second‐order extrapolation formula. The second method is the Crank–Nicolson and Leap‐Frog (CNLF) method, where the Crank–Nicolson method is used to implicitly advance the solution in time, while the coupling terms are explicitly approximated by the Leap‐Frog integration. We show that the BDF2 method is unconditionally stable and uniformly stable in time, while the CNLF method is stable under a CFL condition. Both schemes are validated using numerical simulations. Second‐order convergence in time is observed for both methods. Simulations over a longer period of time show that the errors in the solution remain bounded. Cases when the structure is poroviscoelastic and poroelastic are included in numerical examples.
-
We prove the existence of a weak solution to a fluid-structure interaction (FSI) problem between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations, and a poroviscoelastic medium modeled by the Biot equations. The two are nonlinearly coupled over an interface with mass and elastic energy, modeled by a reticular plate equation, which is transparent to fluid flow. The existence proof is constructive, consisting of two steps. First, the existence of a weak solution to a regularized problem is shown. Next, a weak-classical consistency result is obtained, showing that the weak solution to the regularized problem converges, as the regularization parameter approaches zero, to a classical solution to the original problem, when such a classical solution exists. While the assumptions in the first step only require the Biot medium to be poroelastic, the second step requires additional regularity, namely, that the Biot medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem with nonlinear coupling involving a Biot model for poro(visco)elastic media.more » « less
-
Abstract We introduce and analyze a partially augmented fully mixed formulation and a mixed finite element method for the coupled problem arising in the interaction between a free fluid and a poroelastic medium. The flows in the free fluid and poroelastic regions are governed by the Navier–Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of fluid force, conservation of momentum and the Beavers–Joseph–Saffman condition. We apply dual-mixed formulations in both domains, where the symmetry of the Navier–Stokes and poroelastic stress tensors is imposed in an ultra-weak and weak sense. In turn, since the transmission conditions are essential in the fully mixed formulation, they are imposed weakly by introducing the traces of the structure velocity and the poroelastic medium pressure on the interface as the associated Lagrange multipliers. Furthermore, since the fluid convective term requires the velocity to live in a smaller space than usual, we augment the variational formulation with suitable Galerkin-type terms. Existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with nonmatching grids, together with the corresponding stability bounds and error analysis with rates of convergence. Several numerical experiments are presented to verify the theoretical results and illustrate the performance of the method for applications to arterial flow and flow through a filter.more » « less
-
We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters.more » « less