Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.
more » « less- PAR ID:
- 10457791
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- JAWRA Journal of the American Water Resources Association
- Volume:
- 56
- Issue:
- 2
- ISSN:
- 1093-474X
- Page Range / eLocation ID:
- p. 297-309
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especially in the metalimnion). Empirical and process-driven water-quality models were then used to determine the causes of the low DO concentrations and the magnitudes of P-load reductions needed to improve the water quality of the lake enough to meet multiple water-quality goals, including the WDNR’s criteria for TP and DO. Data from previous studies showed that DO concentrations in the metalimnion decreased slightly as summer progressed in the early 1900s but, since the late 1970s, have typically dropped below 5 milligrams per liter (mg/L), which is the WDNR criterion for impairment. During 2014–18 (the baseline period for this study), the near-surface geometric mean TP concentration during June–September in the east side of the lake was 0.020 mg/L and in the west side was 0.016 mg/L (both were above the 0.015-mg/L WDNR criterion for the lake), and the metalimnetic DO minimum concentrations (MOMs) measured in August ranged from 1.0 to 4.7 mg/L. The degradation in water quality was assumed to have been caused by excessive P inputs to the lake; therefore, the TP inputs to the lake were estimated. The mean annual external P load during 2014–18 was estimated to be 8,980 kilograms per year (kg/yr), of which monitored and unmonitored tributary inputs contributed 84 percent, atmospheric inputs contributed 8 percent, waterfowl contributed 7 percent, and septic systems contributed 1 percent. During fall turnover, internal sediment recycling contributed an additional 7,040 kilograms that increased TP concentrations in shallow areas of the lake by about 0.020 mg/L. The elevated TP concentrations then persisted until the following spring. On an annual basis, however, there was a net deposition of P to the bottom sediments. Empirical models were used to describe how the near-surface water quality of Green Lake would be expected to respond to changes in external P loading. Predictions from the models showed a relatively linear response between P loading and TP and chlorophyll-a (Chl-a) concentrations in the lake, with the changes in TP and Chl-a concentrations being less on a percentage basis (50–60 percent for TP and 30–70 percent for Chl-a) than the changes in P loading. Mean summer water clarity, quantified by Secchi disk depths, had a greater response to decreases in P loading than to increases in P loading. Based on these relations, external P loading to the lake would need to be decreased from 8,980 kg/yr to about 5,460 kg/yr for the geometric mean June–September TP concentration in the east side of the lake, with higher TP concentrations than in the west side, to reach the WDNR criterion of 0.015 mg/L. This reduction of 3,520 kg/yr is equivalent to a 46-percent reduction in the potentially controllable external P sources (all external sources except for precipitation, atmospheric deposition, and waterfowl) from those measured during water years 2014–18. The total external P loading would need to decrease to 7,680 kg/yr (a 17-percent reduction in potentially controllable external P sources) for near-surface June–September TP concentrations in the west side of the lake to reach 0.015 mg/L. Total external P loading would need to decrease to 3,870–5,320 kg/yr for the lake to be classified as oligotrophic, with a near-surface June–September TP concentration of 0.012 mg/L. Results from the hydrodynamic water-quality model GLM–AED (General Lake Model coupled to the Aquatic Ecodynamics modeling library) indicated that MOMs are driven by external P loading and internal sediment recycling that lead to high TP concentrations during spring and early summer, which in turn lead to high phytoplankton production, high metabolism and respiration, and ultimately DO consumption in the upper, warmer areas of the metalimnion. GLM–AED results indicated that settling of organic material during summer might be slowed by the colder, denser, and more viscous water in the metalimnion and thus increase DO consumption. Based on empirical evidence from a comparison of MOMs with various meteorological, hydrologic, water quality, and in-lake physical factors, MOMs were lower during summers, when metalimnetic water temperatures were warmer, near-surface Chl-a and TP concentrations were higher, and Secchi depths were lower. GLM–AED results indicated that the external P load would need to be reduced to about 4,060 kg/yr, a 57-percent reduction from that measured in 2014–18, to eliminate the occurrence of MOMs less than 5 mg/L during more than 75 percent of the years (the target provided by the WDNR). Large reductions in external P loading are expected to have an immediate effect on the near-surface TP concentrations and metalimnetic DO concentrations in Green Lake; however, it may take several years for the full effects of the external-load reduction to be observed because internal sediment recycling is an important source of P for the following spring.more » « less
-
Abstract Rising salinity from road deicing salts threatens the survival and reproduction of freshwater organisms. We conducted two experiments to address how
Daphnia pulex survival and reproduction were affected by road salt concentration (control, 120, 640 and 1200 mg Cl−/L) crossed with three concentrations of water hardness (20, 97, 185 mg CaCO3/L).D. pulex survival was poor in our hard water treatment in both experiments (185 mg CaCO3/L), potentially indicating a low tolerance to hard water for the strain used in our experiments. With the remaining two hardness treatments (20 and 97 mg CaCO3/L), we found no evidence of an interactive effect between salt concentration and water hardness onD. pulex survival. In our population-level experiment,D. pulex survival was reduced by > 60% at 120 mg Cl−/L compared to the control. In the individual experiment, survival was similar between the control and 120 mg Cl−/L, but ≤ 40% of individuals survived in 640 and 1200 mg Cl−/L. For the surviving individuals across all treatments, the number of offspring produced per individual declined with increasing Cl−concentration and in hard water. Our results indicate that current Cl−thresholds may not protect some zooplankton and reduced food availability per capita may enhance the negative impacts of road salt. -
null (Ed.)Nuisance periphyton growth influences the aesthetics, recreation, and aquatic life of waterbodies. Partners Lake is a shallow spring-fed lake in the headwaters of the Illinois River Watershed in Cave Springs, Arkansas, that experiences nuisance growth of periphyton (i.e., Spirogyra spp.) each year. The ratio of dissolved nitrogen (N ~5.0 mg L-1) and phosphorus (P ~0.030 mg L-1) in the lake water (N:P≥288), as well as nutrient limitation assays, suggests that periphyton growth should be P-limited. While the water column lacks sufficient P to promote growth, the sediments have the ability to release P to the overlying water; P-flux ranged from 1.63 mg m-2 d-1 to over 10 mg m-2 d-1, reaching final concentrations of 0.08 to 0.34 mg L-1. However, soluble reactive phosphorus concentrations were consistently at or below 0.030 mg L-1, in the lake, suggesting that the periphyton were likely immobilizing P as quickly as it was released from the sediments. In the lab, maximal periphyton growth (~30 to 35 mg m-2) occurred in the 0.10 to 0.25 mg L-1 P treatments, over a 6 day incubation period. Similar levels of growth occurred when lake sediments were the P source, suggesting P released from the sediments is sufficient to support nuisance algal growth. We need to begin managing the legacy P stored in the sediments, in addition to external P loads, because internal P can sustain nuisance periphyton biomass when N is not limiting.more » « less
-
Removal of selenate (SeO42-) from selenate-contaminated wastewater is challenging due to the commonly coexisting and competing anions of sulfate (SO42-) and nitrate (NO3-). This study investigates SeO42- reduction to elemental selenium (Se0) in a cathode-based bioelectrochemical (BEC) reactor and a conventional biofilm reactor (i.e., an upflow anaerobic reactor). The simulated wastewater contained SeO42- at a typical concentration of 5 mg Se/L, SO42- at a typical concentration of 1000 mg S/L, and NO3- at concentrations that varied from 0 to 10 mg N/L. The impact of sulfate on the BEC reactor was much lower than that on the conventional reactor: The selenium removal, defined as (selenate in influent – dissolved selenium in effluent)/selenate in influent, was 99 % in the BEC reactor versus 69 % in the conventional biofilm reactor. The lower selenium removal in the conventional reactor was mainly due to the >10 times higher reduction of sulfate, which directly caused competition between sulfate and selenate for the common resources such as electrons. The more reduction of sulfate in the conventional reactor further led to 45 times higher production of selenide. Selenide is usually assumed to be minimal and therefore not measured in the literature. This simplification may significantly overestimate selenium removal when the influent sulfate concentration is very high. NO3- in the influent of the BEC reactor promoted selenium removal when it was less than 5.0 mg N/L but inhibited selenate removal when it was more than 7.5 mg N/L. This was supported by the microbial community analysis and intermediate (nitrite) analysis.more » « less
-
Abstract This study examines centennial‐scale hydrological and sedimentological effects of floodplain inundation by avulsion and its upstream and downstream controls. The 1870s avulsion in Cumberland Marshes diverted the Saskatchewan River flow towards Cumberland Lake, a local base level. It invaded a poorly drained sub‐basin of Cumberland Marshes floodplain linked to the parent Saskatchewan River by two small outlets in the resistant substrate. The rapid increase in inflow (~5× on average) during the earlier stages of the avulsion resulted in the base‐level rise and floodplain inundation by the avulsion lake. Since the early 20th century, the forced regression of the avulsion lake occurred, caused by ~5× outlet channel enlargement by ‘hungry‐water’ outflows, whereas the mean lake inflows experienced little change. The avulsion lake served as an effective sediment trap and was filled by predominantly progradational sandy and silty avulsion deposits up to 3–4 m thick, covering about 700 km2. Elsewhere, fluviodeltaic settings with ‘negative relief’ and limited hydrologic connectivity with the rest of the floodplain may be prone to avulsion lakes that form if the rates of inflow increased by avulsion exceed the rates of outflow. Avulsion lakes can last for ~100 years or more before they drain and/or become filled by overbank sediments. On well‐drained floodplains, inundations by avulsions are expected to be short‐term and result in little progradational deposition. This study demonstrates that in some local hydrographic basins, base level becomes a variable of an evolving avulsion rather than its fixed external control. Although avulsion‐induced base‐level changes are short‐lived, they affect 102–103 km2of a floodplain and occur rapidly, accompanied by high aggradation rates.