This study examines centennial‐scale hydrological and sedimentological effects of floodplain inundation by avulsion and its upstream and downstream controls. The 1870s avulsion in Cumberland Marshes diverted the Saskatchewan River flow towards Cumberland Lake, a local base level. It invaded a poorly drained sub‐basin of Cumberland Marshes floodplain linked to the parent Saskatchewan River by two small outlets in the resistant substrate. The rapid increase in inflow (~5× on average) during the earlier stages of the avulsion resulted in the base‐level rise and floodplain inundation by the avulsion lake. Since the early 20th century, the forced regression of the avulsion lake occurred, caused by ~5× outlet channel enlargement by ‘hungry‐water’ outflows, whereas the mean lake inflows experienced little change. The avulsion lake served as an effective sediment trap and was filled by predominantly progradational sandy and silty avulsion deposits up to 3–4 m thick, covering about 700 km2. Elsewhere, fluviodeltaic settings with ‘negative relief’ and limited hydrologic connectivity with the rest of the floodplain may be prone to avulsion lakes that form if the rates of inflow increased by avulsion exceed the rates of outflow. Avulsion lakes can last for ~100 years or more before they drain and/or become filled by overbank sediments. On well‐drained floodplains, inundations by avulsions are expected to be short‐term and result in little progradational deposition. This study demonstrates that in some local hydrographic basins, base level becomes a variable of an evolving avulsion rather than its fixed external control. Although avulsion‐induced base‐level changes are short‐lived, they affect 102–103 km2of a floodplain and occur rapidly, accompanied by high aggradation rates.
more » « less- NSF-PAR ID:
- 10362150
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 47
- Issue:
- 1
- ISSN:
- 0197-9337
- Page Range / eLocation ID:
- p. 308-327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT The rarely witnessed process of river avulsion repositions channels across floodplains, which influences floodplain geomorphology and stratigraphic architecture. The way avulsions redirect water and sediment is typically generalized into one of two styles. Avulsions proceeding through rapid channel switching and producing little to no floodplain disturbance are annexational, while those that involve sequential phases of crevassing, flooding, and eventual development of a new channel are progradational. We test the validity of these avulsion style categories by mapping and characterizing 14 avulsion events in Andean, Himalayan, and New Guinean foreland basins. We use Landsat data to identify how avulsions proceed and interpret the possible products of these processes in terms of geomorphic features and stratigraphy. We show that during annexation the avulsion channel widens, changes its meander wavelength and amplitude, or increases channel thread count. During progradation, avulsion channels are constructed from evolving distributary networks. Often beginning as crevasse splays, these networks migrate down the floodplain gradient and frequently create and fill ponds during the process. We also see evidence for a recently defined third avulsion style. Retrogradation involves overbank flow, like progradation, but is marked by an upstream-migrating abandonment and infilling of the parent channel. Avulsion belts in this study range from 5 to 60 km in length, and from 1 to 50 km in width. On average, these events demonstrate annexational style over 22.4% of their length. Eleven of 13 events either begin or end with annexation, and seven both begin and end with annexation. Only one event exhibited progradation over the entire avulsion-belt length. While there are many documented examples of purely annexational avulsions, we see little evidence for completely progradational or retrogradational avulsions, and instead suggest that a given avulsion is better envisioned as a series of spatiotemporal phases of annexation, progradation, and retrogradation. Such hybrid avulsions likely produce significantly greater stratigraphic variability than that predicted by the traditional end-member model. We suggest that a time-averaged, formation-scale consideration of avulsion products will yield more accurate characterizations of avulsion dynamics in ancient fluvial systems.more » « less
-
Abstract The size and geometry of river channels play a central role in sediment transport and the character of deposition within alluvial basins across spatiotemporal scales spanning the initiation of grain movement to the filling of accommodation generated by subsidence. This study compares several different approaches to estimating palaeoflow depths from fluvial deposits in the early Palaeogene Willwood Formation of north‐west Wyoming, USA. Fluvial story heights (
n = 60) and mud plug thicknesses (n = 13) are statistically indistinguishable from one another and yield palaeoflow depth estimates of 4 to 6 m. The vertical relief on bar clinoforms (n = 112) yields smaller flow depths, by a factor ofca 0.3, with the exception that the largest bar clinoforms match story heights and mud plug estimates. This observation is consistent with modern river data sets that indicate unit bar clinoforms do not capture the reach‐mean bank‐full flow depths except in rare circumstances. Future studies should use story heights (i.e. compound bar deposits) and mud plugs to estimate bank‐full flow depths in alluvial strata. Additionally, the thickness of multi‐storied fluvial sandbodies (n = 102) and overbank cycles composed of paired crevasse splay and palaeosol deposits (n = 45) were compared. The two depositional units display statistically indistinguishable mean and median values. Building upon previous depositional models, these observations suggest basin rivers aggraded approximately one flow depth prior to major avulsion. This avulsion process generated widespread crevasse splay deposition across the floodplain. Once the main river channel stem was reestablished, overbank flooding and palaeosol development dominated floodplain settings. The depositional model implies river aggradation autogenically generated topography in the basin that was effectively filled during the subsequent avulsion. This constitutes a meso‐timescale (103–104 years) compensational pattern driven by morphodynamics that may account for the high completeness of fossil and palaeoclimate records recovered from the basin. -
Abstract The displacement of a river to a new position within its adjacent floodplain is called avulsion, and here we examine how a newly recognized style, called retrogradational avulsion, affects the surrounding floodplain in tropical rainforests using remote sensing. Retrogradational avulsions begin with a channel blockage that causes self‐propagating upstream dechannelization and flooding. While this flooding results in vegetation die‐off and floodplain sedimentation, few quantitative measurements of disturbance by retrogradational avulsions exist. Here, we first focus on land‐cover change following a single retrogradational avulsion in Papua New Guinea from 2012 to 2021. During the avulsion, the river dechannelized 892 m upstream, and the parent channel width doubled. Using maximum likelihood image classification, we observed healthy vegetation fluctuated around 4.3 km2, vegetation regrowth peaked in 2017 at 3.2 km2, dead vegetation peaked in 2013 at 2.1 km2, and visible extent of deposited sediment was greatest in 2015 at 0.44 km2. We also examined 19 other retrogradational avulsions in Papua New Guinea and South America using NDVI. The area of floodplain disturbance (i.e., vegetation die‐off and possible sedimentation) for each avulsion ranged from <1 to >13 km2and scaled with the dechannelization area. Comparing our plan‐view disturbance results with FABDEM digital‐elevation data and ICESat‐2 surface elevation measurements, we hypothesize floodplain disturbance extent is a function of topographic relief. Our results also suggest that retrogradational avulsions, on average, perturb larger areas of forest compared to blowdowns, suggesting this might be an important disturbance regime that influences gap‐filling regeneration in tropical rainforests.
-
Abstract Earthquakes present severe hazards for people and economies and can be primary drivers of landscape change yet their impact to river-channel networks remains poorly known. Here we show evidence for an abrupt earthquake-triggered avulsion of the Ganges River at ~2.5 ka leading to relocation of the mainstem channel belt in the Bengal delta. This is recorded in freshly discovered sedimentary archives of an immense relict channel and a paleo-earthquake of sufficient magnitude to cause major liquefaction and generate large, decimeter-scale sand dikes >180 km from the nearest seismogenic source region. Precise luminescence ages of channel sand, channel fill, and breached and partially liquefied floodplain deposits support coeval timing of the avulsion and earthquake. Evidence for reorganization of the river-channel network in the world’s largest delta broadens the risk posed by seismic events in the region and their recognition as geomorphic agents in this and other tectonically active lowlands. The recurrence of comparable earthquake-triggered ground liquefaction and a channel avulsion would be catastrophic for any of the heavily populated, large river basins and deltas along the Himalayan arc (e.g., Indus, Ganges, Brahmaputra, Ayeyarwady). The compounding effects of climate change and human impacts heighten and extend the vulnerability of many lowlands worldwide to such cascading hazards.
-
Abstract Coastal rivers that build deltas undergo repeated avulsion events—that is, abrupt changes in river course—which we need to understand to predict land building and flood hazards in coastal landscapes. Climate change can impact water discharge, flood frequency, sediment supply, and sea level, all of which could impact avulsion location and frequency. Here we present results from quasi‐2D morphodynamic simulations of repeated delta‐lobe construction and avulsion to explore how avulsion location and frequency are affected by changes in relative sea level, sediment supply, and flood regime. Model results indicate that relative sea‐level rise drives more frequent avulsions that occur at a distance from the shoreline set by backwater hydrodynamics. Reducing the sediment supply relative to transport capacity has little impact on deltaic avulsions, because, despite incision in the upstream trunk channel, deltas can still aggrade as a result of progradation. However, increasing the sediment supply relative to transport capacity can shift avulsions upstream of the backwater zone because aggradation in the trunk channel outpaces progradation‐induced delta aggradation. Increasing frequency of overbank floods causes less frequent avulsions because floods scour the riverbed within the backwater zone, slowing net aggradation rates. Results provide a framework to assess upstream and downstream controls on avulsion patterns over glacial‐interglacial cycles, and the impact of land use and anthropogenic climate change on deltas.