skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inorganic Carbon and p CO 2 Variability During Ice Formation in the Beaufort Gyre of the Canada Basin
Abstract Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC andATto deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 yearpCO2mooring time series where a ~35‐μatm increase inpCO2was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resultingpCO2is sensitive to the ratio ofATand DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derivedATand DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing thepCO2at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC andpCO2in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.  more » « less
Award ID(s):
1604085 1719280 1845877 1303644
PAR ID:
10457805
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
6
ISSN:
2169-9275
Page Range / eLocation ID:
p. 4017-4028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract There is limited information on how the nutrient and freshwater input affects water column carbonate chemistry in the estuaries along the northern Gulf of Mexico. In this study, we assess the seasonal and spatial variability in carbonate chemistry in the Barataria Basin, a eutrophic estuary adjacent to the mouth of the Mississippi River. Eleven stations were sampled along a salinity gradient during the winter (January), spring (April), summer (July), and fall (October) of 2021. Surface and bottom water samples were collected for the analyses of dissolved inorganic carbon (DIC); total alkalinity (TA); and nitrite plus nitrate (NO2 + NO3), phosphate (PO4), and dissolved silica (SiO4). Dissolved CO2(pCO2) was measured in the surface water. Seasonal surface DIC and TA values ranged from 1553 to 2582 μmol kg−1and 1217 to 2217 μmol kg−1, respectively. DIC and TA varied seasonally and showed an increasing trend from fresh stations to saline stations. The highest DIC and TA values were observed during the fall season, likely due to the increased contribution of DIC and TA from adjacent marshes as a result of enhanced porewater exchange. In contrast to DIC and TA, pCO2decreased with the increase of salinity. The seasonal and spatial patterns in carbonate chemistry could not be explained solely by physical mixing and reflected complex interactions between biogeochemical processes driven by nutrient supply and temperature as well as tidal flushing and material exchanges with adjacent marshes. 
    more » « less
  2. Abstract For the first time the annual carbon budget on the West Antarctic Peninsula shelf was studied with continuously measured CO2system parameters (pH andpCO2) from a subsurface mooring. The temporal evolution of the mixed layer dissolved inorganic carbon (DIC) is investigated via a mass balance. The annual mixed layer DIC inventory change was 1.1 ± 0.4 mol m−2 yr−1, which was mainly regulated by biological drawdown (−2.8 ± 2.4 mol m−2 yr−1), diapycnal eddy diffusion (2.6 ± 1.3 mol m−2 yr−1), entrainment/detrainment (0.9 ± 0.4 mol m−2 yr−1), and air‐water gas exchange (0.4 ± 2.1 mol m−2 yr−1). Significant carbon drawdown was observed in the spring and summer, which was replenished by the physical processes mentioned above. These observations suggest this area is an annual atmosphere CO2sink with a mixed layer net community production of 2.8 ± 2.4 mol m−2 yr−1. These results highlight the significant seasonality in the DIC mass balance and the necessity of year‐round continuous observations for robust assessments of biogeochemical cycling in this region. 
    more » « less
  3. Abstract The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled toδ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ13CDIC, Δ14C, andε14C that are not recorded in observations. 
    more » « less
  4. Abstract Rivers and wetlands are a major source of terrestrial derived carbon for coastal ocean margins. This results in a net loss of terrestrial carbon into the shelf water and their subsequent transport to interior ocean basin. This study investigates the transport of dissolved inorganic carbon (DIC) in the surface‐mixed layer of Louisiana Shelf in northern Gulf of Mexico (nGOM) adjacent to the Wax Lake Delta (WLD) and Barataria Bay (BB), which represent contrasting net land gain and net land loss areas in this region. DIC samples were collected, in conjunction with short‐lived radium isotopes224Ra (t1/2 = 3.66 days) and223Ra (t1/2 = 11.43 days) samples during June and September 2019, to quantify shelf transport of DIC in the surface‐mixed layer during period of high and low river flow, respectively. Radium distribution implied shelf mixing rates of 140–6,759 and 63–2,724 m2 s−1for WLD and BB regions, respectively, with more than tenfold decrease in rates between the two seasons. Net shelf transport of DIC was found to be highest for the WLD region in June, highlighting the importance of freshwater discharge in exporting DIC. An upscaling of our study for the entire Louisiana Shelf indicates that 1.54–20.19 × 109 mol C d−1transported in June 2019 and 0.34–8.12 × 109 mol C d−1in the form of DIC was exported across the shallow region of the shelf during high and low river flow seasons, representing an important source of DIC to the NGOM. 
    more » « less
  5. Abstract The Chukchi Sea is an increasing CO2sink driven by rapid climate changes. Understanding the seasonal variation of air‐sea CO2exchange and the underlying mechanisms of biogeochemical dynamics is important for predicting impacts of climate change on and feedbacks by the ocean. Here, we present a unique data set of underway sea surface partial pressure of CO2(pCO2) and discrete samples of biogeochemical properties collected in five consecutive cruises in 2014 and examine the seasonal variations in air‐sea CO2flux and net community production (NCP). We found that thermal and non‐thermal effects have different impacts on sea surfacepCO2and thus the air‐sea CO2flux in different water masses. The Bering summer water combined with meltwater has a significantly greater atmospheric CO2uptake potential than that of the Alaskan Coastal Water in the southern Chukchi Sea in summer, due to stronger biological CO2removal and a weaker thermal effect. By analyzing the seasonal drawdown of dissolved inorganic carbon (DIC) and nutrients, we found that DIC‐based NCP was higher than nitrate‐based NCP by 66%–84% and attributable to partially decoupled C and N uptake because of a variable phytoplankton stoichiometry. A box model with a non‐Redfield C:N uptake ratio can adequately reproduce observedpCO2and DIC, which reveals that, during the intensive growing season (late spring to early summer), 30%–46% CO2uptake in the Chukchi Sea was supported by a flexible stoichiometry of phytoplankton. These findings have important ramification for forecasting the responses of CO2uptake of the Chukchi ecosystem to climate change. 
    more » « less