Abstract Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC andATto deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 yearpCO2mooring time series where a ~35‐μatm increase inpCO2was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resultingpCO2is sensitive to the ratio ofATand DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derivedATand DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing thepCO2at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC andpCO2in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.
more »
« less
Carbonate and Nutrient Dynamics in a Mississippi River Influenced Eutrophic Estuary
Abstract There is limited information on how the nutrient and freshwater input affects water column carbonate chemistry in the estuaries along the northern Gulf of Mexico. In this study, we assess the seasonal and spatial variability in carbonate chemistry in the Barataria Basin, a eutrophic estuary adjacent to the mouth of the Mississippi River. Eleven stations were sampled along a salinity gradient during the winter (January), spring (April), summer (July), and fall (October) of 2021. Surface and bottom water samples were collected for the analyses of dissolved inorganic carbon (DIC); total alkalinity (TA); and nitrite plus nitrate (NO2 + NO3), phosphate (PO4), and dissolved silica (SiO4). Dissolved CO2(pCO2) was measured in the surface water. Seasonal surface DIC and TA values ranged from 1553 to 2582 μmol kg−1and 1217 to 2217 μmol kg−1, respectively. DIC and TA varied seasonally and showed an increasing trend from fresh stations to saline stations. The highest DIC and TA values were observed during the fall season, likely due to the increased contribution of DIC and TA from adjacent marshes as a result of enhanced porewater exchange. In contrast to DIC and TA, pCO2decreased with the increase of salinity. The seasonal and spatial patterns in carbonate chemistry could not be explained solely by physical mixing and reflected complex interactions between biogeochemical processes driven by nutrient supply and temperature as well as tidal flushing and material exchanges with adjacent marshes.
more »
« less
- Award ID(s):
- 1756788
- PAR ID:
- 10572029
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Estuaries and Coasts
- Volume:
- 48
- Issue:
- 3
- ISSN:
- 1559-2723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Estuaries may be uniquely susceptible to the combined acidification pressures of atmospherically driven ocean acidification (OA), biologically driven CO 2 inputs from the estuary itself, and terrestrially derived freshwater inputs. This study utilized continuous measurements of total alkalinity (TA) and the partial pressure of carbon dioxide (pCO 2 ) from the mouth of Great Bay, a temperate northeastern U.S. estuary, to examine the potential influences of endmember mixing and biogeochemical transformation upon estuary buffering capacity ( β – H ). Observations were collected hourly over 28 months representing all seasons between May 2016 and December 2019. Results indicated that endmember mixing explained most of the observed variability in TA and dissolved inorganic carbon (DIC), concentrations of which varied strongly with season. For much of the year, mixing dictated the relative proportions of salinity‐normalized TA and DIC as well, but a fall season shift in these proportions indicated that aerobic respiration was observed, which would decrease β – H by decreasing TA and increasing DIC. However, fall was also the season of weakest statistical correspondence between salinity and both TA and DIC, as well as the overall highest salinity, TA and β – H . Potential biogeochemically driven β – H decreases were overshadowed by increased buffering capacity supplied by coastal ocean water. A simple modeling exercise showed that mixing processes controlled most monthly changes in TA and DIC, obscuring impacts from air–sea exchange or metabolic processes. Advective mixing contributions may be as important as biogeochemically driven changes to observe when evaluating local estuarine and coastal OA.more » « less
-
Abstract The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled toδ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ13CDIC, Δ14C, andε14C that are not recorded in observations.more » « less
-
Abstract The marine carbonate system is influenced by anthropogenic CO2uptake, biogeochemical processes, and physical changes that involve freshwater input and removal. Two frequently used parameters to quantify seawater carbonate system are total alkalinity (TA) and total dissolved inorganic carbon (DIC). To account for the physical changes, both TA and DIC are usually normalized to a reference salinity (i.e., nTA and nDIC), and then the relationship between nTA and nDIC is used to identify major biogeochemical processes that regulate the carbonate system, based on process‐specific reaction stoichiometry. However, the theoretical basis of this interpretation has not been holistically examined. In this study, we validated this method under idealized conditions and discussed the associated assumptions and limitations. Furthermore, we applied this method to interpret field TA and DIC data from a lagoonal estuary in the northwestern Gulf of Mexico. Our results demonstrated that evaluating field data that encompass multiple stations and time periods could be problematic. In addition, various combinations of biogeochemical processes can lead to the same nTA–nDIC relationship, even though the relative importance of each individual process may vary significantly. Therefore, the stoichiometric relationship relying solely on TA and DIC data is not a definitive approach for uncovering dominant biogeochemical processes. Instead, measurements of process‐specific parameters are necessary.more » « less
-
Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments.more » « less
An official website of the United States government
