The widespread coccolithophore
Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (
- PAR ID:
- 10457810
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Phycology
- Volume:
- 56
- Issue:
- 3
- ISSN:
- 0022-3646
- Page Range / eLocation ID:
- p. 818-829
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary Emiliania huxleyi is an abundant oceanic phytoplankton, impacting the global cycling of carbon through both photosynthesis and calcification. Here, we examined the transcriptional responses of populations of in the North Pacific Subtropical Gyre to shifts in the nutrient environment. Using a metatranscriptomic approach, nutrient‐amended microcosm studies were used to track the global metabolism ofE. huxleyi . The addition of nitrate led to significant changes in transcript abundance for gene pathways involved in nitrogen and phosphorus metabolism, with a decrease in the abundance of genes involved in the acquisition of nitrogen (e.g. N‐transporters) and an increase in the abundance of genes associated with phosphate acquisition (e.g. phosphatases). Simultaneously, after the addition of nitrate, genes associated with calcification and genes unique to the diploid life stages ofE. huxleyi significantly increased. These results suggest that nitrogen is a major driver of the physiological ecology ofE. huxleyi in this system and further suggest that the addition of nitrate drives shifts in the dominant life‐stage of the population. Together, these results underscore the importance of phenotypic plasticity to the success ofE. huxleyi , a characteristic that likely underpins its ability to thrive across a variety of marine environments.E. huxleyi -
Summary Steady‐state photosynthetic
CO 2responses (A /C icurves) are used to assess environmental responses of photosynthetic traits and to predict future vegetative carbon uptake through modeling. The recent development of rapidA /C icurves (RAC iRs) permits faster assessment of these traits by continuously changing [CO 2] around the leaf, and may reveal additional photosynthetic properties beyond what is practical or possible with steady‐state methods.Gas exchange necessarily incorporates photosynthesis and (photo)respiration. Each process was expected to respond on different timescales due to differences in metabolite compartmentation, biochemistry and diffusive pathways. We hypothesized that metabolic lags in photorespiration relative to photosynthesis/respiration and
CO 2diffusional limitations can be detected by varying the rate of change in [CO 2] duringRAC iR assays. We tested these hypotheses through modeling and experiments at ambient and 2% oxygen.Our data show that photorespiratory delays cause offsets in predicted
CO 2compensation points that are dependent on the rate of change in [CO 2]. Diffusional limitations may reduce the rate of change in chloroplastic [CO 2], causing a reduction in apparentRAC iR slopes under highCO 2ramp rates.Multirate
RAC iRs may prove useful in assessing diffusional limitations to gas exchange and photorespiratory rates. -
Summary Traditionally, leaves were thought to be supplied with
CO 2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO 2that is assimilated, vs simply lost to transpiration.Cut leaves of
Populus deltoides andBrassica napus were placed in eitherKC l or one of three [NaH13CO 3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO 2exiting the leaf across light andCO 2response curves in real‐time using a tunable diode laser absorption spectroscope.The rates of assimilation and efflux of xylem‐transported
CO 2increased with increasing xylem [13CO 2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO 2accounted forc. 2.5% of the total assimilation in both species in the highest [13CO 2*].The majority of xylem‐transported
CO 2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO 2comprises a small portion of total photosynthesis, but may be more important whenCO 2is limiting. -
Abstract Accurate estimation of terrestrial gross primary productivity (
GPP ) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF ) in a temperate deciduous forest at Harvard Forest, Massachusetts,USA . Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2 = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively;P < 0.0001). We developed a model to estimateGPP from the tower‐based measurement ofSIF and leaf‐level ChlF parameters. The estimation ofGPP from this model agreed well with flux tower observations ofGPP (R 2 = 0.68;P < 0.0001), demonstrating the potential ofSIF for modelingGPP . At the leaf scale, we found that leafF q ’ /F m ’ , the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopySIF yield (SIF /APAR ,R 2 = 0.79;P < 0.0001). We also found that canopySIF andSIF ‐derivedGPP (GPPSIF ) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R 2 = 0.65 for canopyGPPSIF and chlorophyll content;P < 0.0001), leaf area index (LAI ) (R 2 = 0.35 for canopyGPPSIF andLAI ;P < 0.0001), and normalized difference vegetation index (NDVI ) (R 2 = 0.36 for canopyGPPSIF andNDVI ;P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. -
In contrast to an obsolete notion that erythrocytes, or red blood cells (
RBC s), play a passive and minor role in haemostasis and thrombosis, over the past decades there has been increasing evidence thatRBC s have biologically and clinically important functions in blood clotting and its disorders. This review summarizes the main mechanisms that underlie the involvement ofRBC s in haemostasis and thrombosisin vivo , such as rheological effects on blood viscosity and platelet margination, aggregation and deformability ofRBC s; direct adhesion and indirect biochemical interactions with endothelial cells and platelets. The ability of stored and pathologically alteredRBC s to generate thrombin through exposure of phosphatidylserine has been emphasized. The procoagulant and prothrombotic potential ofRBC ‐derived microparticles transfused with storedRBC s or formed in various pathological conditions associated with haemolysis has been described along with prothrombotic effects of free haemoglobin and haem. Binding of fibrinogen or fibrin toRBC s may influence their effects on fibrin network structure, clot mechanical properties and fibrinolytic resistance. Recent data on platelet‐driven clot contraction show thatRBC s compressed by platelets pulling on fibrin form a tightly packed array of polyhedral erythrocytes, or polyhedrocytes, which comprises a nearly impermeable barrier important for haemostasis and wound healing.RBC s may perform dual roles, both helping to stem bleeding but at the same time contributing to thrombosis in a variety of ways.