skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evenness effects mask richness effects on ecosystem functioning at macro‐scales in lakes
Abstract Biodiversity–ecosystem functioning (BEF) theory has largely focused on species richness, although studies have demonstrated that evenness may have stronger effects. While theory and numerous small‐scale studies support positive BEF relationships, regional studies have documented negative effects of evenness on ecosystem functioning. We analysed a lake dataset spanning the continental US to evaluate whether strong evenness effects are common at broad spatial scales and if BEF relationships are similar across diverse regions and trophic levels. At the continental scale, phytoplankton evenness explained more variance in phytoplankton and zooplankton resource use efficiency (RUE; ratio of biomass to resources) than richness. For individual regions, slopes of phytoplankton evenness–RUE relationships were consistently negative and positive for phytoplankton and zooplankton RUE, respectively, and most slopes did not significantly differ among regions. Findings suggest that negative evenness effects may be more common than previously documented and are not exceptions restricted to highly disturbed systems.  more » « less
Award ID(s):
1638679 1638539
PAR ID:
10457827
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
22
Issue:
12
ISSN:
1461-023X
Page Range / eLocation ID:
p. 2120-2129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Positive biodiversity–ecosystem functioning (BEF) relationships observed in experiments can be challenging to identify in natural communities. Freshwater animal communities are disproportionately harmed by global change that results in accelerated species loss. Understanding how animal-mediated ecosystems functions may change as a result of global change can help determine whether biodiversity or species-specific conservation will be effective at maintaining function. Unionid mussels represent half of imperiled species in freshwater ecosystems globally and perform important ecological functions such as water filtration and nutrient recycling. We explored BEF relationships for 22 naturally assembled mussel aggregations spanning three river basins. We used the Price equation to partition the contributions of species richness, composition, and context dependent interactions to two functions of interests: spatially-explicit standing-stock biomass (indirect proxy for function) and species-specific nitrogen (N) excretion rates (direct measure of N recycling). Random and non-random species loss each reduced biomass and N recycling. Many rare species with low contributions to biomass contributed to standing-stock biomass in all basins. Widespread species had variable function across sites, such that context dependent effects (CDEs) outweighed richness effects on standing-stock biomass in two basins, and were similar to richness effects in the third. Richness effects outweighed CDEs for N recycling. Thus, many species contributed a low proportion to overall N-recycling; a product we attribute to the high evenness and functional effect trait diversity associated with these communities. The loss of low-functioning species reduced the function of persisting species. This novel result using observational data adds evidence that positive species interactions, such as interspecific facilitation, may be a mechanism by which biodiversity enhances ecosystem functions. Our work stresses the importance of evaluating species-specific contributions to functions in diverse systems, such as nutrient cycling when maintaining specific animal-mediated functions is a management goal because indirect proxies may not completely characterize BEF relationships. 
    more » « less
  2. Abstract A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale‐dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross‐scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems. 
    more » « less
  3. Abstract Although the positive effects of biodiversity on ecosystem functioning and stability have been extensively documented in the literature, previous studies have mostly explored the mechanisms of functioning and stability independently. It is unclear how biodiversity effects on functioning may covary with those on stability.Here we developed an integrated framework to explore links between mechanisms underlying biodiversity effects on functioning and those on stability. Specifically, biodiversity effects on ecosystem functioning were partitioned into complementarity effects (CE) and selection effects (SE), and those on stability were partitioned into species asynchrony and species stability. We investigated howCEandSEwere linked to species asynchrony and stability and how their links might be mediated by species evenness, using a multi‐site grassland experiment.Our mixed‐effects models showed that a higher community productivity was mainly due toCEand a higher community stability was mainly due to species asynchrony. Moreover,CEwas positively related to species asynchrony, thus leading to a positive association between ecosystem productivity and stability.We used a structural equation model to illustrate how species evenness might mediate links between the various mechanisms. Communities with a higher evenness exhibited a higherCEand species asynchrony, but a lowerSEand species stability. These evenness‐mediated associations enhanced the positive relationship betweenCEand species asynchrony, but blurred that betweenSEand species asynchrony.Synthesis. Our findings demonstrate mechanistic links between biodiversity effects on ecosystem functioning and stability. By doing so, our study contributes a novel framework for understanding ecological mechanisms of the functioning–stability relationship, which has important implications for developing management plans focused on strengthening synergies between ecosystem functioning and stability over the long term. 
    more » « less
  4. Abstract Increases in species richness with habitat area (species–area relationship, or SAR) and increases in ecosystem function with species richness (biodiversity–ecosystem functioning, or BEF) are widely studied ecological patterns. Incorporating functional trait analysis into assemblage datasets may help clarify interpretations of SAR and BEF relationships in natural ecological systems. For example, life history theory can be used to make predictions about what species are most important in generating ecosystem function given a certain set of environmental conditions. We used quantitative assemblage data for freshwater mussels at nine sites in western Alabama, USA, to test for SAR and BEF relationships. At each site, we calculated species richness, mussel assemblage density, and two fundamental metrics of ecosystem function: biomass and secondary production. We also tested whether the proportional biomass and production contributions from species belonging to each of three life history strategies—opportunistic strategistsadapted to unstable or frequently disturbed habitats,periodic strategistsadapted to habitats subject to predictable large‐scale disturbances, andequilibrium strategistsadapted to stable habitats—varied longitudinally with stream drainage area, a proxy for habitat area. Species richness increased with stream size (SAR), and both biomass and production increased with species richness (BEF) and mussel density. There were few longitudinal changes in the proportional contributions of the different life history strategy classifications that we used, but the invasive clamCorbicula flumineacontributed proportionally more biomass and production at sites that had smaller drainage areas. This study provides further evidence for a clear longitudinal SAR in stream‐dwelling taxa. It also suggests BEF relationships for biomass and secondary production in natural assemblages but underscores the importance of assemblage density in BEF studies that use observational field data. Variation in proportional biomass and production contributions by different life history strategies was likely limited by the size of the stream size gradient in our study, as contributions were uniformly high for species with life history traits better adapted to stable and productive habitats such as mid‐sized rivers with low or predictable hydrologic disturbance frequencies. This highlights the need to understand how organisms' functional traits govern their relationships to the environment at different scales. 
    more » « less
  5. Abstract The relationship between biodiversity and ecosystem function (BEF) captivates ecologists, but the factors responsible for the direction of this relationship remain unclear. While higher ecosystem functioning at higher biodiversity levels (‘positive BEF’) is not universal in nature, negative BEF relationships seem puzzlingly rare. Here, we develop a dynamical consumer‐resource model inspired by microbial decomposer communities in pitcher plant leaves to investigate BEF. We manipulate microbial diversity via controlled colonization and measure their function as total ammonia production. We test how niche partitioning among bacteria and other ecological processes influence BEF in the leaves. We find that a negative BEF can emerge from reciprocal interspecific inhibition in ammonia production causing a negative complementarity effect, or from competitive hierarchies causing a negative selection effect. Absent these factors, a positive BEF was the typical outcome. Our findings provide a potential explanation for the rarity of negative BEF in empirical data. 
    more » « less