skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UV‐Micropatterned Miniaturization: Rapid In Situ Photopatterning and Miniaturization of Microscale Features on Shrinkable Thermoplastics
Abstract Shrink lithography is a promising top‐down micro/nanofabrication technique capable of miniaturizing patterns/structures to scales much smaller than the initial mold, however, rapid inexpensive fabrication of high‐fidelity shrinkable microfeatures remains challenging. This work reports the discovery and characterization of a simple, fast, low‐cost method for replicating and miniaturizing intricate micropatterns/structures on commodity heat‐shrinkable polymers. Large‐area permanent micropatterning on polystyrene and polyolefin shrink film is attained in one step under ambient conditions through brief irradiation by a shortwave UV pencil lamp. After baking briefly in an oven, the film shrinks biaxially and the miniaturized micropatterns emerge with significantly reduced surface area (up to 95%) and enhanced depth profile. The entire UV‐micropatterned miniaturization process is highly reproducible and achievable on benchtop under a few minutes without chemicals or sophisticated apparatus. A variety of microgrid patterns are replicated and miniaturized with high yield and resolution on both planar and curved surfaces. Sequential UV exposures enable easy and rapid engineering of sophisticated microtopography with miniaturized, multiscale, multidimensional microstructures. UV–ozone micropatterned polystyrene surfaces are well‐suited for lab‐on‐a‐chip analytical applications owing to the inherent biocompatibility and enhanced surface hydrophilicity. Miniaturization of dense, periodic micropatterns may facilitate low‐cost prototyping of functional devices/surfaces such as micro‐optics/sensors and tunable metamaterials.  more » « less
Award ID(s):
1813805 1909848
PAR ID:
10457856
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
5
Issue:
6
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellulose-based paper is a versatile material with a diverse array of applications. While paper is not commonly thought of as a material that shrinks, here we present a method for miniaturizing paper via periodate oxidation. Chromatography paper was exposed to varying concentrations of periodate (0.1–0.5 M) over a 96-h period. Following optimization of miniaturization parameters, fourteen different types of paper were miniaturized and reductions in surface area ranging from 60 to 80% were observed. All cellulose paper types, but not cellulose-derivatives, displayed successful miniaturization. Results were highly tunable dependent upon periodate concentration and reaction time. Potential applications of the technique are discussed, including its use as a microfabrication method. 
    more » « less
  2. Abstract The evolution of miniaturization can result in dramatic alterations of morphology, physiology, and behavior; however, the effects of miniaturization on sexual dimorphism remain largely unknown. Here we investigate how miniaturization influences patterns of sexual size dimorphism (SSD) in geckos. Measuring 1,875 individuals from 131 species, we characterized patterns of SSD relative to body size across two families. We found that miniaturized species were more female biased than non-miniaturized species. Additionally, one family that contained many miniaturized species (Sphaerodactylidae) displayed allometric patterns in SSD with body size, where larger species were male biased and smaller species were more female biased. Smaller species in this lineage also produced proportionally larger eggs. By contrast, another family containing few miniaturized species (Phyllodactylidae) displayed a more isometric trend. Together, these observations are consistent with the hypothesis that selection for increased reproductive success in small species of Sphaerodactylidae results in female-biased SSD in these taxa, which in turn drives the positive SSD allometry observed in this lineage. Thus, selection for increased miniaturization in the clade may be offset by selection on maintaining a female size in smaller taxa that ensures reproductive success. 
    more » « less
  3. Abstract Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction time. By immersing microPADs in 0.5-M NaIO4for 48 hours, devices were miniaturized by 78% in surface area, and this treatment allowed for the fabrication of functional channels with widths as small as 301 µm and hydrophobic barriers with widths as small as 387 µm. The miniaturized devices were shown to be compatible with redox-based colorimetric assays and enzymatic reactions. This miniaturization technique provides a new option for fabricating sub-millimeter-sized features in paper-based fluidic devices without requiring specialized equipment and could enable new capabilities and applications for microPADs. 
    more » « less
  4. Abstract Thin polymeric films are being explored for biomedical uses such as drug delivery, biofiltration, biosensors, and tissue regeneration. Of specific interest is the formation of mechanically flexible sheets, which can be formed with controllable thickness for sealing wounds, or as biomimetic cellular constructs. Flexible substrates with precise micro‐ and nanopatterns can function as supports for cell growth with conformal contact at the biointerface. To date, approaches to form free‐standing, thin sheets are limited in the ability to present patterned architectures and micro/nanotextured surfaces. Other materials have a lack of degradability, precluding their application as cellular scaffolds. An approach is suggested using biocompatible and biodegradable films fabricated from silk fibroin. This work presents the fabrication and characterization of flexible, micropatterned, and biodegradable 2D fibroin sheets for cell adhesion and proliferation. A facile and scalable technique using photolithography is shown to fabricate optically transparent, strong, and flexible fibroin substrates with tunable and precise micropatterns over large areas. By controlling the surface architectures, the control of cell adhesion and spreading can be observed. Additionally, the base material is fully degradable via proteolysis. Through mechanical control and directing the adherent cells, it is possible to explore interactions of cells and the microscale geometric topography. 
    more » « less
  5. We report a method to fabricate silicon micro–nanostructures of different shapes by tuning the number of layers and the sizes of self-assembled polystyrene beads, which serve as the mask, and by tuning the reactive ion etching (RIE) time. This process is simple, scalable, and inexpensive without using any sophisticated nanomanufacturing equipment. Specifically, in this work, we demonstrate the proposed process by fabricating silicon micro- or nanoflowers, micro- or nanobells, nanopyramids, and nanotriangles using a self-assembled monolayer or bilayer of polystyrene beads as the mask. We also fabricate flexible micro–nanostructures by using silicon molds with micro–nanostructures. Finally, we demonstrate the fabrication of bandage-type electrochemical sensors with micro–nanostructured working electrodes for detecting dopamine, a neurotransmitter related to stress and neurodegenerative diseases in artificial sweat. All these demonstrations indicate that the proposed process provides a low-cost, easy-to-use approach for fabricating silicon micro–nanostructures and flexible micro–nanostructures, thus paving a way for developing wearable micro–nanostructures enabled sensors for a variety of applications in an efficient manner. 
    more » « less