Abstract The mechanical function of the myocardium is defined by cardiomyocyte contractility and the biomechanics of the extracellular matrix (ECM). Understanding this relationship remains an important unmet challenge due to limitations in existing approaches for engineering myocardial tissue. Here, they established arrays of cardiac microtissues with tunable mechanics and architecture by integrating ECM‐mimetic synthetic, fiber matrices, and induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs), enabling real‐time contractility readouts, in‐depth structural assessment, and tissue‐specific computational modeling. They found that the stiffness and alignment of matrix fibers distinctly affect the structural development and contractile function of pure iPSC‐CM tissues. Further examination into the impact of fibrous matrix stiffness enabled by computational models and quantitative immunofluorescence implicates cell‐ECM interactions in myofibril assembly, myofibril maturation, and notably costamere assembly, which correlates with improved contractile function of tissues. These results highlight how iPSC‐CM tissue models with controllable architecture and mechanics can elucidate mechanisms of tissue maturation and disease. 
                        more » 
                        « less   
                    
                            
                            Electronic‐ECM: A Permeable Microporous Elastomer for an Advanced Bio‐Integrated Continuous Sensing Platform
                        
                    
    
            Abstract Tissue interfaced electronics have become promising candidates for transcending beyond conventional diagnostic technology, enabling chronic, quantitative health monitoring possibilities; however, these systems have primarily relied on impenetrable materials that contribute to the mechanical and physical mismatch of bioelectronic interfaces. Inspired by the soft mechanics and physical architecture of the epidermal extracellular matrix, this study presents a 3D microporous, fibrous mesh of polydimethylsiloxane for epidermal electronics. The resulting elastic microfiber mat, exhibits a minimal mechanical footprint with analogous viscoelastic behavior, cytocompatibility, and biofluid‐permeable interface capable of small molecule, gas, and transdermal water diffusion. Electrocardiography electrodes heterogeneously integrate within the synthetic electronic‐extracellular matrix (e‐ECM) membrane and achieve chronic high resolution biopotential monitoring during typically debilitating environments (e.g., vigorous sweating) for conventional bioelectronics. The e‐ECM platform provides a substrate template for open‐mesh electronics, enabling advanced implementations in long‐term quantitative analysis monitoring for wearable and implantable devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2020486
- PAR ID:
- 10457918
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 5
- Issue:
- 7
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Modern implantable bioelectronics demand soft, biocompatible components that make robust, low‐impedance connections with the body and circuit elements. Concurrently, such technologies must demonstrate high efficiency, with the ability to interface between the body's ionic and external electronic charge carriers. Here, a mixed‐conducting suture, the e‐suture, is presented. Composed of silk, the conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and insulating jacketing polymers,the resulting e‐suture has mixed‐conducting properties at the interface with biological tissue as well as effective insulation along its length. The e‐suture can be mechanically integrated into electronics, enabling the acquisition of biopotentials such as electrocardiograms, electromyograms, and local field potentials (LFP). Chronic, in vivo acquisition of LFP with e‐sutures remains stable for months with robust brain activity patterns. Furthermore, e‐sutures can establish electrophoretic‐based local drug delivery, potentially offering enhanced anatomical targeting and decreased side effects associated with systemic administration, while maintaining an electrically conducting interface for biopotential monitoring. E‐sutures expand on the conventional role of sutures and wires by providing a soft, biocompatible, and mechanically sound structure that additionally has multifunctional capacity for sensing, stimulation, and drug delivery.more » « less
- 
            Confident identification of pericytes (PCs) remains an obstacle in the field, as a single molecular marker for these unique perivascular cells remains elusive. Adding to this challenge is the recent appreciation that PC populations may be heterogeneous, displaying a range of morphologies within capillary networks. We found additional support on the ultrastructural level for the classification of these PC subtypes—“thin-strand” (TSP), mesh (MP), and ensheathing (EP)—based on distinct morphological characteristics. Interestingly, we also found several examples of another cell type, likely a vascular smooth muscle cell, in a medial layer between endothelial cells (ECs) and pericytes (PCs) harboring characteristics of the ensheathing type. A conserved feature across the different PC subtypes was the presence of extracellular matrix (ECM) surrounding the vascular unit and distributed in between neighboring cells. The thickness of this vascular basement membrane was remarkably consistent depending on its location, but never strayed beyond a range of 150–300 nm unless thinned to facilitate closer proximity of neighboring cells (suggesting direct contact). The density of PC-EC contact points (“peg-and-socket” structures) was another distinguishing feature across the different PC subtypes, as were the apparent contact locations between vascular cells and brain parenchymal cells. In addition to this thinning, the extracellular matrix (ECM) surrounding EPs displayed another unique configuration in the form of extensions that emitted out radially into the surrounding parenchyma. Knowledge of the origin and function of these structures is still emerging, but their appearance suggests the potential for being mechanical elements and/or perhaps signaling nodes via embedded molecular cues. Overall, this unique ultrastructural perspective provides new insights into PC heterogeneity and the presence of medial cells within the microvessel wall, the consideration of extracellular matrix (ECM) coverage as another PC identification criteria, and unique extracellular matrix (ECM) configurations (i.e., radial extensions) that may reveal additional aspects of PC heterogeneity.more » « less
- 
            Abstract Physical properties of the extracellular matrix (ECM) affect cell behaviors ranging from cell adhesion and migration to differentiation and gene expression, a process known as mechanotransduction. While most studies have focused on the impact of ECM stiffness, using linearly elastic materials such as polyacrylamide gels as cell culture substrates, biological tissues and ECMs are viscoelastic, which means they exhibit time‐dependent mechanical responses and dissipate mechanical energy. Recent studies have revealed ECM viscoelasticity, independent of stiffness, as a critical physical parameter regulating cellular processes. These studies have used biomaterials with tunable viscoelasticity as cell‐culture substrates, with alginate hydrogels being one of the most commonly used systems. Here, we detail the protocols for three approaches to modulating viscoelasticity in alginate hydrogels for 2D and 3D cell culture studies, as well as the testing of their mechanical properties. Viscoelasticity in alginate hydrogels can be tuned by varying the molecular weight of the alginate polymer, changing the type of crosslinker—ionic versus covalent—or by grafting short poly(ethylene‐glycol) (PEG) chains to the alginate polymer. As these approaches are based on commercially available products and simple chemistries, these protocols should be accessible for scientists in the cell biology and bioengineering communities. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Tuning viscoelasticity by varying alginate molecular weight Basic Protocol 2: Tuning viscoelasticity with ionic versus covalent crosslinking Basic Protocol 3: Tuning viscoelasticity by adding PEG spacers to alginate chains Support Protocol 1: Testing mechanical properties of alginate hydrogels Support Protocol 2: Conjugating cell‐adhesion peptide RGD to alginatemore » « less
- 
            Integrin, as a mechanotransducer, establishes the mechanical reciprocity between the extracellular matrix (ECM) and cells at integrin-mediated adhesion sites. This study used steered molecular dynamics (SMD) simulations to investigate the mechanical responses of integrinαvβ3with and without 10th type III fibronectin (FnIII10) binding for tensile, bending and torsional loading conditions. The ligand-binding integrin confirmed the integrin activation during equilibration and altered the integrin dynamics by changing the interface interaction between β-tail, hybrid and epidermal growth factor domains during initial tensile loading. The tensile deformation in integrin molecules indicated that fibronectin ligand binding modulates its mechanical responses in the folded and unfolded conformation states. The bending deformation responses of extended integrin models reveal the change in behaviour of integrin molecules in the presence of Mn2+ion and ligand based on the application of force in the folding and unfolding directions of integrin. Furthermore, these SMD simulation results were used to predict the mechanical properties of integrin underlying the mechanism of integrin-based adhesion. The evaluation of integrin mechanics provides new insights into understanding the mechanotransmission (force transmission) between cells and ECM and contributes to developing an accurate model for integrin-mediated adhesion. This article is part of a discussion meeting issue ‘Supercomputing simulations of advanced materials’.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
