skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing the electrical double layer by operando X‐ray photoelectron spectroscopy through a graphene‐carbon nanotube composite window
Abstract The electrical double layer is known to spontaneously form at the electrode‐electrolyte interface, impacting many important chemical and physical processes as well as applications including electrocatalysis, electroorganic synthesis, nanomaterial preparation, energy storage, and even emulsion stabilization. However, it has been challenging to study this fundamental phenomenon at the molecular level because the electrical double layer is deeply “buried” by the bulk electrolyte solution. Here, we report a quantitative probing of the electrical double layer of ionic liquids from the solid side of a photoelectron‐transparent graphene‐carbon nanotube hybrid membrane electrode using X‐ray photoelectron spectroscopy. The membrane window is ultrathin (1‐1.5 nm), large (~1 cm2), and robust, enabling a tight seal of the electrolyte and quantitative measurement with excellent photoelectron signals. Byoperandomonitoring the population changes of cations and anions in response to the applied electrical potentials, we experimentally resolve the chemical structure and dynamics of the electrical double layer, which corroborate results from molecular dynamics simulations. image  more » « less
Award ID(s):
1626288
PAR ID:
10457923
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
EcoMat
Volume:
2
Issue:
2
ISSN:
2567-3173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Developing promising solid‐state Li batteries with capabilities of high current densities have been a major challenge partly due to large interfacial resistance across the electrode/electrolyte interfaces. This work represents an integrated network of self‐standing polymer electrolyte and active electrode materials with in situ UV cross‐linking. This method provides a uniform morphology of composite polymer electrolyte with low thickness of 20–40 μm. This modification leads to promising cycling results with 85% specific capacity retention in Li||LiFePO4cell over 100 cycles at high current densities of 170 mA g−1(~25 μA cm−2, 1 C).By applying this method, the interfacial resistance decreases as high as seven folds compared to noncross‐linked interfaces. The following work introduce a facile and cost‐effective method in developing fast‐charging self‐standing polymer batteries with enhanced electrochemical properties. image 
    more » « less
  2. Abstract The selenenate anion (RSeO) is introduced as an active organocatalyst for the dehydrohalogen coupling of benzyl halides to formtrans‐stilbenes. It is shown that RSeOis a more reactive catalyst than the previously reported sulfur analogues (sulfenate anion, RSO) and selenolate anions (RSe) in the aforementioned reaction. This catalytic system was also applied to the benzylic‐chloromethyl‐coupling polymerization (BCCP) of a bis‐chloromethyl arene to form ppv (poly(p‐phenylene vinylene))‐type polymers with high yields, Mn(average molecular weight) up to 13,000 and Đ (dispersity) of 1.15. magnified image 
    more » « less
  3. Abstract A Rh(II)/Au(I) catalyzed carbene cascade approach for the stereoselective synthesis of diverse spirocarbocycles is described. The cascade reaction involves a rhodium carbene initiatedsp2C−H functionalization followed by a gold catalyzed Conia‐ene cyclization. The cascade reaction accommodates a variety of aryl substituents as well as ring sizes and proceeds with high diastereoselectivity providing access to diverse spirocarbocycles. magnified image 
    more » « less
  4. Abstract Aiming at the enhanced catalytic activity of fluoro‐λ3‐iodane generated from iodoarene precatalyst with Selectfluor and HF⋅pyridine, this study focused on the λ3‐iodanes bearing coordinating substituents. Compared to 4‐iodoanisole as a precatalyst of our previous method,N‐methyl‐2‐iodobenzamide or 2‐iodobenzamide worked well in the fluorocyclization ofN‐propargyl carboxamides to oxazoles. Control experiments suggest the equilibrium mixture of iodane‐amine complexes and cyclic iodane fluorides would be involved in the present catalysis. magnified image 
    more » « less
  5. Abstract Avalanche photodiodes fabricated from AlInAsSb grown as a digital alloy exhibit low excess noise. In this article, we investigate the band structure‐related mechanisms that influence impact ionization. Band‐structures calculated using an empirical tight‐binding method and Monte Carlo simulations reveal that the mini‐gaps in the conduction band do not inhibit electron impact ionization. Good agreement between the full band Monte Carlo simulations and measured noise characteristics is demonstrated. image 
    more » « less