skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Full band Monte Carlo simulation of AlInAsSb digital alloys
Abstract Avalanche photodiodes fabricated from AlInAsSb grown as a digital alloy exhibit low excess noise. In this article, we investigate the band structure‐related mechanisms that influence impact ionization. Band‐structures calculated using an empirical tight‐binding method and Monte Carlo simulations reveal that the mini‐gaps in the conduction band do not inhibit electron impact ionization. Good agreement between the full band Monte Carlo simulations and measured noise characteristics is demonstrated. image  more » « less
Award ID(s):
1842641
PAR ID:
10504597
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
InfoMat published by John Wiley & Sons Australia, Ltd on behalf of UESTC.
Date Published:
Journal Name:
InfoMat
Volume:
2
Issue:
6
ISSN:
2567-3165
Page Range / eLocation ID:
1236 to 1240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Developing promising solid‐state Li batteries with capabilities of high current densities have been a major challenge partly due to large interfacial resistance across the electrode/electrolyte interfaces. This work represents an integrated network of self‐standing polymer electrolyte and active electrode materials with in situ UV cross‐linking. This method provides a uniform morphology of composite polymer electrolyte with low thickness of 20–40 μm. This modification leads to promising cycling results with 85% specific capacity retention in Li||LiFePO4cell over 100 cycles at high current densities of 170 mA g−1(~25 μA cm−2, 1 C).By applying this method, the interfacial resistance decreases as high as seven folds compared to noncross‐linked interfaces. The following work introduce a facile and cost‐effective method in developing fast‐charging self‐standing polymer batteries with enhanced electrochemical properties. image 
    more » « less
  2. Abstract The electrical double layer is known to spontaneously form at the electrode‐electrolyte interface, impacting many important chemical and physical processes as well as applications including electrocatalysis, electroorganic synthesis, nanomaterial preparation, energy storage, and even emulsion stabilization. However, it has been challenging to study this fundamental phenomenon at the molecular level because the electrical double layer is deeply “buried” by the bulk electrolyte solution. Here, we report a quantitative probing of the electrical double layer of ionic liquids from the solid side of a photoelectron‐transparent graphene‐carbon nanotube hybrid membrane electrode using X‐ray photoelectron spectroscopy. The membrane window is ultrathin (1‐1.5 nm), large (~1 cm2), and robust, enabling a tight seal of the electrolyte and quantitative measurement with excellent photoelectron signals. Byoperandomonitoring the population changes of cations and anions in response to the applied electrical potentials, we experimentally resolve the chemical structure and dynamics of the electrical double layer, which corroborate results from molecular dynamics simulations. image 
    more » « less
  3. Abstract Lead halide perovskites (LHPs), have attracted considerable attention across various applications owing to their exceptional optoelectronic properties. However, the main challenge hindering the broad adoption of lead halide perovskites lies in their stability and toxicity. In this review, we summarize the outstanding properties of platinum (Pt) halide perovskites, with a particular focus on the stability and applications of Cs2PtI6and its derivatives. Cs2PtI6has shown promising efficiency for photovoltaic devices, as well as photoelectrochemical water splitting with stable behavior in acid or basic conditions. Cs2PtI6also shows promise in gas sensing and thermoelectric devices. The emergence of 2D Pt (II) halide perovskites opens up new avenues for environmentally friendly materials for photonic and optoelectronic devices like room temperature phosphoresce and triplet‐triplet annihilation (TTA) based up‐conversion. image 
    more » « less
  4. Abstract Pseudocyclic β‐trifluorosulfonyloxy vinylbenziodoxolones were prepared starting from hydroxybenziodoxolones and alkynes in the presence of trifluoromethanesulfonic acid. The reaction of these compounds with azide anion leads to β‐azido vinylbenziodoxolones as products of vinylic nucleophilic substitution in which addition‐elimination reactions occur and the double bond configuration is retained. The structures of β‐trifluorosulfonyloxy vinylbenziodoxolone and β‐azido vinylbenziodoxolone were established by single crystal X‐ray diffraction. magnified image 
    more » « less
  5. Abstract The direct C−H acyloxylation of polycyclic aromatic hydrocarbons (PAHs) with carboxylic acids as the acyloxylating agents was achieved via the electron‐donor‐acceptor (EDA) complexes between PAHs andN‐iodosuccinimide (NIS). This visible light‐assisted metal‐free C−H acyloxylation reaction provides an easy access to the desired aryl carboxylates from readily available PAHs and aliphatic and aromatic carboxylic acids under mild reaction conditions. magnified image 
    more » « less