skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post Middle Miocene Tectonomagmatic and Stratigraphic Evolution of the Victoria Land Basin, West Antarctica
Abstract Seismic reflection and borehole data are used to create structure maps of four regional and three local unconformities that constrain the post middle Miocene evolution of the Victoria Land Basin (VLB), which is located in the western Ross Sea within the Late Cretaceous through Quaternary West Antarctic Rift System. Isochore maps of the strata between unconformities show that rifting was mostly amagmatic between 12 to 7.6 Ma, with subsidence controlled by faults bordering the northwest margin of the basin and in a tectonic zone along the southern basin axis known as the Terror Rift. Depocenters surrounding volcanic features in strata younger than 4.3 Ma indicate an increasing influence of flexure due to volcanic loading on the subsidence pattern in the southern VLB after this time. The intervening period, from 7.6 to 4.3 Ma, was a transitional period during which both extensional tectonism and magmatism exerted strong influences on basin morphology. Since 4.3 Ma, a series of flexural subbasins formed successively at different times and positions as the different volcanic centers that built Ross Island erupted. In composite, these subbasins form a flexural moat surrounding Ross Island and smaller volcanic centers immediately to the north. The widths of these basins indicate that the flexural rigidity of the lithosphere ranges from 0.20 × 1019to 12.96 × 1019N‐m (elastic thickness 0.6 to 2.4 km).  more » « less
Award ID(s):
1644251
PAR ID:
10457925
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
21
Issue:
3
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ross Island is located in the southern Victoria Land Basin along the western margin of the West Antarctic Rift System. Episodic volcanism since ca. 4.6 Ma produced a discontinuous sedimentary moat around the island, coeval with regional extension. The moat is a composite of four smaller sub‐basins created during distinct episodes of volcanism. Subsidence within each sub‐basin is modeled as bending of a continuous elastic plate, first considering subsidence that occurred only during the time in which the associated volcano was active, and then considering cumulative subsidence since the onset of volcanism on Ross Island. Models based on strata deposited in each sub‐basin during the time interval in which the respective volcano was active yield flexural rigidities ranging from 6–36 × 1018N‐m, with the lowest values associated with the youngest volcanoes on the south and southwest sides of the island. Models based on the entire stratigraphic interval deposited since the onset of volcanism yield flexural rigidities up to 20 times greater than models that consider only strata deposited within each sub‐basin when the associated volcano was active. Models of the composite basin overestimate the strength of the lithosphere due to inclusion of strata deposited during periods in which regional extension rather than local flexure dominated subsidence. The models indicate that Ross Island is in near flexural isostatic equilibrium with moderately low‐density (3,260 kg m−3) upper mantle, although an additional buoyant load equivalent to a mantle temperature anomaly of up to 200°C is permissible. 
    more » « less
  2. Abstract Mantle‐induced dynamic topography (i.e., subsidence and uplift) has been increasingly recognized as an important process in foreland basin development. However, characterizing and distinguishing the effects (i.e., location, extent and magnitude) of dynamic topography in ancient foreland basins remains challenging because the spatio‐temporal footprint of dynamic topography and flexural topography (i.e., generated by topographic loading) can overlap. This study employs 3D flexural backstripping of Upper Cretaceous strata in the central part of the North American Cordilleran foreland basin (CFB) to better quantify the effects of dynamic topography. The extensive stratigraphic database and good age control of the CFB permit the regional application of 3D flexural backstripping in this basin for the first time. Dynamic topography started to influence the development of the CFB during the late Turonian to middle Campanian (90.2–80.2 Ma) and became the dominant subsidence mechanism during the middle to late Campanian (80.2–74.6 Ma). The area influenced by >100 m dynamic subsidence is approximately 400 by 500 km, within which significant (>200 m) dynamic subsidence occurs in an irregular‐shaped (i.e., lunate) subregion. The maximum magnitude of dynamic subsidence is 300 ± 100 m based on the 80.2–74.6 Ma tectonic subsidence maps. With the maximum magnitude of dynamic uplift being constrained to be 200–300 m, the gross amount of dynamic topography in the Late Cretaceous CFB is 500–600 m. Although the location of dynamic subsidence revealed by tectonic subsidence maps is generally consistent with isopach map trends, tectonic subsidence maps developed through 3D flexural backstripping provide more accurate constraints of the areal extent, magnitude and rate of dynamic topography (as well as flexural topography) in the CFB through the Late Cretaceous. This improved understanding of dynamic topography in the CFB is critical for refining current geodynamic models of foreland basins and understanding the surface expression of mantle processes. 
    more » « less
  3. null (Ed.)
    Dynamic topography refers to the vertical deflection (i.e., uplift and subsidence) of the Earth’s surface generated in response to mantle flow. Although dynamic subsidence has been increasingly invoked to explain the subsidence and migration of depocenters in the Late Cretaceous North American Cordilleran foreland basin (CFB), it remains a challenging task to discriminate the effects of dynamic mantle processes from other subsidence mechanisms, and the spatial and temporal scales of dynamic topography is not well known. To unravel the relationship between sedimentary systems, accommodation, and subsidence mechanisms of the CFB through time and space, a high-resolution chronostratigraphic framework was developed for the Upper Cretaceous strata based on a dense data set integrating >600 well logs from multiple basins/regions in Wyoming, Utah, Colorado, and New Mexico, USA. The newly developed stratigraphic framework divides the Upper Cretaceous strata into four chronostratigraphic packages separated by chronostratigraphic surfaces that can be correlated regionally and constrained by ammonite biozones. Regional isopach patterns and shoreline trends constructed for successive time intervals suggest that dynamic subsidence influenced accommodation creation in the CFB starting from ca. 85 Ma, and this wave of subsidence increasingly affected the CFB by ca. 80 Ma as subsidence migrated from the southwest to northeast. During 100−75 Ma, the depocenter migrated from central Utah (dominantly flexural subsidence) to north-central Colorado (dominantly dynamic subsidence). Subsidence within the CFB during 75−66 Ma was controlled by the combined effects of flexural subsidence induced by local Laramide uplifts and dynamic subsidence. Results from this study provide new constraints on the spatio-temporal footprint and migration of large-scale (>400 km × 400 km) dynamic topography at an average rate ranging from ∼120 to 60 km/m.y. in the CFB through the Late Cretaceous. The wavelength and location of dynamic topography (subsidence and uplift) generated in response to the subduction of the conjugate Shatsky Rise highly varied through both space and time, probably depending on the evolution of the oceanic plateau (e.g., changes in its location, subduction angle and depth, and buoyancy). Careful, high-resolution reconstruction of regional stratigraphic frameworks using three-dimensional data sets is critical to constrain the influence of dynamic topography. The highly transitory effects of dynamic topography need to be incorporated into future foreland basin models to better reconstruct and predict the formation of foreland basins that may have formed under the combined influence of upper crustal flexural loading and dynamic subcrustal loading associated with large-scale mantle flows. 
    more » « less
  4. Abstract Three drivers of subsidence are recognized in the Western Interior Basin: Mesozoic–early Cenozoic flexure adjacent to the thin‐skinned, eastward propagating Sevier Orogeny, Late Cretaceous–Eocene flexure associated with thick‐skinned Laramide Uplifts and Late Cretaceous dynamic subsidence. This study combines outcrop lithofacies, palaeocurrent measurements, detrital zircon geochronology, biostratigraphy, stratigraphic correlations and isopach maps of Coniacian–Maastrichtian (89–66 Ma) units to identify these subsidence mechanisms impact on basin geometry and stratigraphic architecture in the northern Utah to southwestern Wyoming segment of the North American Cordillera. Detrital zircon maximum depositional ages and biostratigraphy support that the Maastrichtian Hams Fork Conglomerate was deposited above the Moxa unconformity in the wedgetop and foredeep depozones. The Moxa unconformity underlies the progradational Ericson Formation in the distal foredeep. The Hams Fork, however, is younger than the Ericson Formation, and instead equivalent to upper Almond Formation. Therefore, the hiatus associated with the Moxa unconformity continued for several million years longer in the fold belt and proximal basin than in the distal foredeep, with Ericson Formation‐equivalent strata onlapping the Moxa unconformity towards the west. Regional thickness patterns record and constrain the timing of the transition from Sevier to Laramide‐style tectonic regimes. From 88 to 83 Ma (upper Baxter Formation) a westward‐thickening stratigraphic wedge characterized the foredeep developed by lithospheric flexure by thrust‐belt loading. Nevertheless, the presence of >500 m of subsidence >200 km from the thrust front suggests a long‐wavelength subsidence mechanism consistent with dynamic subsidence. By 83 Ma (Blair Formation) the long‐wavelength depocentre shifted away from the thrust belt, with no evidence of a Sevier foredeep. This depocentre continued migrating eastward during the early‐mid Campanian (ca. 81–77 Ma). The late Campanian–Maastrichtian (ca. 74–66 Ma) is marked by narrow sedimentary wedges adjacent to the Wind River, Granite and Uinta Mountain uplifts and attributed to flexural loading by Laramide deformation. 
    more » « less
  5. Late Cenozoic evolution of the Baja California (BC) peninsula governs its species diversity, with changes to terrestrial habitats and shorelines driven by volcanic and tectonic processes. New geologic mapping and geochronology in central BC help assess if recent landscape evolution created a barrier to gene flow. The NW-trending topographic divide of the BC peninsula near San Ignacio-Santa Rosalia (27.4N) is a low (400500 m asl), broad (2030 km-wide) pass. At the pass, ~2022-Ma volcaniclastic strata, mafic lavas, fluvial conglomerate, cross-bedded eolian sandstone, and a felsic tuff dip ~515 SW. Similar lithology and chronology suggest these strata correlate to the lower Comondu Group (CG). They are overlain by middle Miocene (~1114 Ma) mafic lavas with similar SW dips that overlap in age with the upper CG. NW of the pass, upper Miocene (~9.511 Ma) post-CG volcaniclastic strata and mafic lava flows are exposed in the Sierra San Francisco and dip ~10 SE on its SE flank, inclined differently than older SW-dipping CG at the pass. The basalt of Esperanza (~10 Ma) unconformably overlies the CG at and west of the pass. Its ~1 regional dip suggests that ~515 of SW tilting occurred prior to ~10 Ma in the footwall of the NW-striking Campamento fault, located at the base of the ~150 m-high rift escarpment. The N-striking Arroyo Yaqui fault, ~10 km E of the Campamento fault in a low-relief region capped by Quaternary marine strata, exposes crystalline basement in its footwall and may be a major rift margin structure. Thus the location, orientation, and age of the divide may be controlled by rift-related faulting and tilting plus beveling and lateral retreat of the escarpment. Pliocene tidal sediments occur up to ~200 m asl ~20 km west of the low pass similar to Pliocene marine strata east of the pass at ~300 m asl, indicating late Miocene to Pliocene subsidence was followed by >200 m of post-4 Ma uplift. Uplift was likely driven by transtensional faulting and possibly magmatic inflation by ~7090 km-wavelength domes. Further mapping will constrain the timing of vertical crustal motions and test whether the tidal embayment crossed the peninsula through this low pass, isolated species, and prevented terrestrial gene flow. Integration of geologic and genetic data will determine how volcano- tectonic processes shaped genetic diversity. 
    more » « less