skip to main content


Title: Open‐Shell Donor–Acceptor Conjugated Polymers with High Electrical Conductivity
Abstract

Conductive polymers largely derive their electronic functionality from chemical doping, processes by which redox and charge‐transfer reactions form mobile carriers. While decades of research have demonstrated fundamentally new technologies that merge the unique functionality of these materials with the chemical versatility of macromolecules, doping and the resultant material properties are not ideal for many applications. Here, it is demonstrated that open‐shell conjugated polymers comprised of alternating cyclopentadithiophene and thiadiazoloquinoxaline units can achieve high electrical conductivities in their native “undoped” form. Spectroscopic, electrochemical, electron paramagnetic resonance, and magnetic susceptibility measurements demonstrate that this donor–acceptor architecture promotes very narrow bandgaps, strong electronic correlations, high‐spin ground states, and long‐range π‐delocalization. A comparative study of structural variants and processing methodologies demonstrates that the conductivity can be tuned up to 8.18 S cm−1. This exceeds other neutral narrow bandgap conjugated polymers, many doped polymers, radical conductors, and is comparable to commercial grades of poly(styrene‐sulfonate)‐doped poly(3,4‐ethylenedioxythiophene). X‐ray and morphological studies trace the high conductivity to rigid backbone conformations emanating from strong π‐interactions and long‐range ordered structures formed through self‐organization that lead to a network of delocalized open‐shell sites in electronic communication. The results offer a new platform for the transport of charge in molecular systems.

 
more » « less
Award ID(s):
1757220 1632825
NSF-PAR ID:
10457987
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
24
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Controlling network growth and architecture of 3D-conjugated porous polymers (CPPs) is challenging and therefore has limited the ability to systematically tune the network architecture and study its impact on doping efficiency and conductivity. We have proposed that π-face masking straps mask the π-face of the polymer backbone and therefore help to control π–π interchain interactions in higher dimensional π-conjugated materials unlike the conventional linear alkyl pendant solubilizing chains that are incapable of masking the π-face. Herein, we used cycloaraliphane-based π-face masking strapped monomers and show that the strapped repeat units, unlike the conventional monomers, help to overcome the strong interchain π–π interactions, extend network residence time, tune network growth, and increase chemical doping and conductivity in 3D-conjugated porous polymers. The straps doubled the network crosslinking density, which resulted in 18 times higher chemical doping efficiency compared to the control non-strapped-CPP. The straps also provided synthetic tunability and generated CPPs of varying network size, crosslinking density, dispersibility limit, and chemical doping efficiency by changing the knot to strut ratio. For the first time, we have shown that the processability issue of CPPs can be overcome by blending them with insulating commodity polymers. The blending of CPPs with poly(methylmethacrylate) (PMMA) has enabled them to be processed into thin films for conductivity measurements. The conductivity of strapped-CPPs is three orders of magnitude higher than that of the poly(phenyleneethynylene) porous network.

     
    more » « less
  2. Abstract

    Solution‐processable highly conductive polymers are of great interest in emerging electronic applications. For p‐doped polymers, conductivities as high a nearly 105S cm−1have been reported. In the case of n‐doped polymers, they often fall well short of the high values noted above, which might be achievable, if much higher charge‐carrier mobilities determined could be realized in combination with high charge‐carrier densities. This is in part due to inefficient doping and dopant ions disturbing the ordering of polymers, limiting efficient charge transport and ultimately the achievable conductivities. Here, n‐doped polymers that achieve a high conductivity of more than 90 S cm−1by a simple solution‐based co‐deposition method are reported. Two conjugated polymers with rigid planar backbones, but with disordered crystalline structures, exhibit surprising structural tolerance to, and excellent miscibility with, commonly used n‐dopants. These properties allow both high concentrations and high mobility of the charge carriers to be realized simultaneously in n‐doped polymers, resulting in excellent electrical conductivity and thermoelectric performance.

     
    more » « less
  3. Abstract

    Conjugated polymers need to be doped to increase charge carrier density and reach the electrical conductivity necessary for electronic and energy applications. While doping increases carrier density, Coulomb interactions between the dopant molecules and the localized carriers are poorly screened, causing broadening and a heavy tail in the electronic density‐of‐states (DOS). The authors examine the effects of dopant‐induced disorder on two complimentary charge transport properties of semiconducting polymers, the Seebeck coefficient and electrical conductivity, and demonstrate a way to mitigate them. Their simulations, based on a modified Gaussian disorder model with Miller‐Abrahams hopping rates, show that dopant‐induced broadening of the DOS negatively impacts the Seebeck coefficient versus electrical conductivity trade‐off curve. Increasing the dielectric permittivity of the polymer mitigates dopant‐carrier Coulomb interactions and improves charge transport, evidenced by simultaneous increases in conductivity and the Seebeck coefficient. They verified this increase experimentally in iodine‐doped P3HT and P3HT blended with barium titanate (BaTiO3) nanoparticles. The addition of 2% w/w BaTiO3nanoparticles increased conductivity and Seebeck across a broad range of doping, resulting in a fourfold increase in power factor. Thus, these results show a promising path forward to reduce the dopant‐charge carrier Coulomb interactions and mitigate their adverse impact on charge transport.

     
    more » « less
  4. Katz, Howard E (Ed.)
    Abstract

    Doping of organic semiconductors has served as an effective method to achieve high electrical conductivity and large thermoelectric power factor. This is of importance to the development of flexible/wearable electronics and green energy‐harvesting technologies. The doping impact of the Lewis acid tris (pentafluorophenyl) borane (BCF) on the thermoelectric performance of poly(2‐(4,4′‐bis(2‐methoxyethoxy)‐5′‐methyl‐[2,2′‐bithiophen]‐5‐yl)‐5‐methylthieno[3,2‐b]thiophene (pgBTTT), a thiophene‐based polymer featuring oligoethylene glycol side chains is investigated. Tetrafluorotetracyanoquinodimethane (F4TCNQ), a well‐established dopant, is utilized as a comparison; however, its inability to co‐dissolve with pgBTTT in less polar solvents hinders the attainment of higher doping levels. Consequently, a comparative study is performed on the thermoelectric behavior of pgBTTT doped with BCF and F4TCNQ at a very low doping level. Subsequent investigation is carried out with BCF at higher doping levels. Remarkably, at 50 wt% BCF doping level, the highest power factor of 223 ± 4 µW m−1K2is achieved with an electrical conductivity of 2180 ± 360 S cm−1and a Seebeck coefficient of 32 ± 1.3 µV K−1. This findings not only contribute valuable insights to the dopant interactions with oxygenated side chain polymers but also open up new avenues for high conductivity thermoelectric polymers in flexible electronic applications.

     
    more » « less
  5. Semiconducting conjugated polymers (CPs) have shown great potential in organic solar cells and organic field-effect transistors (OFETs), due to their tunable electronic and optical properties. In this study, we compare computational predictions of electronic and optical properties of ensembles of cis-polyacetylene (cis-PA) multiple oligomers in two different forms (a) undoped cis-PA and (b) cis- PA doped by phosphorous fluoride (PF6−) via density functional theory (DFT) with hybrid functionals. The comparison of undoped cis-PA under the constraint of injected charge carrier and cis-PA doped by PF6− shows that either doping or injection provides very similar features in electronic structure and optical properties. Doped and injected are similar to each other and different from the pristine, undoped PA. Computed results also indicate that the injection of charge carriers and adding p-type doping into the semiconducting CP model both greatly affect the conductivity. These observations provide a better understanding and practical use of the properties of polyacetylene films for flexible electronic applications. 
    more » « less