Abstract The charged particles in the solar wind are often observed to possess a nonthermal tail in the velocity distribution function, a feature that can be fitted with the Kappa model. The anisotropic, or bi-Kappa, model of protons, electrons, and other charged particles is thus adopted in the literature for interpreting the data as well as in the context of the analysis of wave–particle interactions. The present paper develops an approximate but efficient theory of the mirror and cyclotron instabilities excited by the bi-Kappa protons in the solar wind. A velocity moment-based quasi-linear theory of these instabilities is also formulated in order to investigate the saturation behavior. Applications of the formalism are made for instabilities close to the marginally unstable state, which is typical of the solar wind near 1 au.
more »
« less
Hybrid Simulation and Quasi-linear Theory of Bi-Kappa Proton Instabilities
Abstract The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT⊥>T∥(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics.
more »
« less
- Award ID(s):
- 2203321
- PAR ID:
- 10458211
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 191
- Size(s):
- Article No. 191
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.In situ observations by the Parker Solar Probe (PSP) have revealed new properties of the proton velocity distributions (VDs), including hammerhead features that suggest a non-isotropic broadening of the beams. Aims.The present work proposes a very plausible explanation for the formation of hammerhead proton populations through the action of a proton firehose-like instability triggered by the proton beam. Methods.We investigated a self-generated firehose-like instability driven by the relative drift of ion populations using a simplified moment-based quasi-linear (QL) theory. While simpler and faster than advanced numerical simulations, this toy model provided rapid insights and concisely highlighted the role of plasma micro-instabilities in relaxing the observed anisotropies of particle VDs in the solar wind and space plasmas. Results.The QL theory proposed here shows that the resulting transverse waves are right-hand polarized and have two consequences on the protons: (i) They reduce the relative drift between the beam and the core, but above all, (ii) they induce a strong perpendicular temperature anisotropy specific to the observed hammerhead ion beam. Moreover, the long-run QL results suggest that these hammerhead distributions are rather transitory states that are still subject to relaxation mechanisms, in which instabilities such as the one discussed here are very likely involved. This foundational work motivates future detailed studies using advanced methods.more » « less
-
Abstract Recent in situ observations from Parker Solar Probe (PSP) near perihelia reveal ion beams, temperature anisotropies, and kinetic wave activity. These features are likely linked to solar wind heating and acceleration. During PSP Encounter 17 (at 11.4Rs) on 2023 September 26, the PSP/FIELDS instrument detected enhanced ion-scale wave activity associated with deviations from local thermodynamic equilibrium in ion velocity distribution functions (VDFs) observed by the PSP/Solar Probe Analyzers-Ion. Dense beams (secondary populations) were present in the proton VDFs during this wave activity. Using bi-Maxwellian fits to the proton VDFs, we found that the density of the proton beam population increased during the wave activity and, unexpectedly, surpassed the core population at certain intervals. Interestingly, the wave power was reduced during the intervals when the beam population density exceeded the core density. The drift velocity of the beams decreases from 0.9 to 0.7 of the Alfvén speed, and the proton core shows a higher temperature anisotropy (T⊥/T∥ > 2.5) during these intervals. We conclude that the observations during these intervals are consistent with a reconnection event during a heliospheric current sheet crossing. During this event,α-particle parameters (density, velocity, and temperature anisotropy) remained nearly constant. Using linear analysis, we examined how the proton beam drives instability or wave dissipation. Furthermore, we investigated the nonlinear evolution of ion kinetic instabilities using hybrid kinetic simulations. This study provides direct clues about energy transfer between particles and waves in the young solar wind.more » « less
-
null (Ed.)ABSTRACT Various plasma waves and instabilities are abundantly present in the solar wind plasma, as evidenced by spacecraft observations. Among these, propagating modes and instabilities driven by temperature anisotropies are known to play a significant role in the solar wind dynamics. In situ measurements reveal that the threshold conditions for these instabilities adequately explain the solar wind conditions at large heliocentric distances. This paper pays attention to the combined effects of electron firehose instability driven by excessive parallel electron temperature anisotropy (T⊥e < T∥e) at high beta conditions, and electromagnetic ion cyclotron instability driven by excessive perpendicular proton temperature anisotropy (T⊥i > T∥i). By employing quasilinear kinetic theory based upon the assumption of bi-Maxwellian velocity distribution functions for protons and electrons, the dynamical evolution of the combined instabilities and their mutual interactions mediated by the particles is explored in depth. It is found that while in some cases, the two unstable modes are excited and saturated at distinct spatial and temporal scales, in other cases, the two unstable modes are intermingled such that a straightforward interpretation is not so easy. This shows that when the dynamics of protons and electrons are mutually coupled and when multiple unstable modes are excited in the system, the dynamical consequences can be quite complex.more » « less
-
Abstract Recent observations of the solar wind ions by the SPAN-I instruments on board the Parker Solar Probe (PSP) spacecraft at solar perihelia (Encounters) 4 and closer find ample evidence of complex anisotropic non-Maxwellian velocity distributions that consist of core, beam, and “hammerhead” (i.e., anisotropic beam) populations. The proton core populations are anisotropic, withT⊥/T∥ > 1, and the beams have super-Alfvénic speed relative to the core (we provide an example from Encounter 17). Theα-particle population shows similar features to the protons. These unstable velocity distribution functions (VDFs) are associated with enhanced, right-hand (RH) and left-hand (LH) polarized ion-scale kinetic wave activity, detected by the FIELDS instrument. Motivated by PSP observations, we employ nonlinear hybrid models to investigate the evolution of the anisotropic hot-beam VDFs and model the growth and the nonlinear stage of ion kinetic instabilities in several linearly unstable cases. The models are initialized with ion VDFs motivated by the observational parameters. We find rapidly growing (in terms of proton gyroperiods) combined ion-cyclotron and magnetosonic instabilities, which produce LH and RH ion-scale wave spectra, respectively. The modeled ion VDFs in the nonlinear stage of the evolution are qualitatively in agreement with PSP observations of the anisotropic core and “hammerhead” velocity distributions, quantifying the effect of the ion kinetic instabilities on wind plasma heating close to the Sun. We conclude that the wave–particle interactions play an important role in the energy transfer between the magnetic energy (waves) and random particle motion, leading to anisotropic solar wind plasma heating.more » « less
An official website of the United States government
