skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electron mirror and cyclotron instabilities for solar wind plasma
ABSTRACT The solar wind plasma is characterized by unequal effective kinetic temperatures defined in perpendicular and parallel directions with respect to the ambient magnetic field. For electrons, the excessive perpendicular temperature anisotropy leads to quasi-parallel electromagnetic electron cyclotron (or whistler) instability and aperiodic electron-mirror instability with oblique wave vectors. The present paper carries out a direct side-by-side comparison of quasi-linear (QL) theory and particle-in-cell (PIC) simulation of combined mirror and cyclotron instabilities acting upon the initially anisotropic electron temperatures, and find that the QL theory satisfactorily encapsulates the non-linear aspect of the combined instability effects. However, a discrepancy between the present study and a previous PIC simulation result is also found, which points to the need for further investigation to resolve such an issue.  more » « less
Award ID(s):
1842643
PAR ID:
10360559
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3764-3771
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The quasi-steady states of collisionless plasmas in space (e.g., in the solar wind and planetary environments) are governed by the interactions of charged particles with wave fluctuations. These interactions are responsible not only for the dissipation of plasma waves but also for their excitation. The present analysis focuses on two instabilities, mirror and electromagnetic ion cyclotron instabilities, associated with the same proton temperature anisotropyT>T(where ⊥, ∥ are directions defined with respect to the local magnetic field vector). Theories relying on standard Maxwellian models fail to link these two instabilities (i.e., predicted thresholds) to the proton quasi-stable anisotropies measured in situ in a completely satisfactory manner. Here we revisit these instabilities by modeling protons with the generalized bi-Kappa (bi-κpower-law) distribution, and by a comparative analysis of a 2D hybrid simulation with the velocity-moment-based quasi-linear (QL) theory. It is shown that the two methods feature qualitative and, even to some extent, quantitative agreement. The reduced QL analysis based upon the assumption of a time-dependent bi-Kappa model thus becomes a valuable theoretical approach that can be incorporated into the present studies of solar wind dynamics. 
    more » « less
  2. Abstract The proton-cyclotron (PC) instability operates in various space plasma environments. In the literature, the so-called velocity moment-based quasi-linear theory is employed to investigate the physical process of PC instability that takes place after the onset of early linear exponential growth. In this method, the proton velocity distribution function (VDF) is assumed to maintain a bi-Maxwellian form for all time, which substantially simplifies the analysis, but its validity has not been rigorously examined by comparing against the actual solution of the kinetic equation. The present paper relaxes the assumption of the velocity moment-based quasi-linear theory by actually solving for the velocity space diffusion equation under the assumption of separable perpendicular and parallel VDFs, and upon comparison with the simplified velocity moment theory, it demonstrates that the simplified method is largely valid, despite the fact that the method slightly overemphasizes the relaxation of temperature anisotropy when the system is close to the marginally stable state. The overall validation is further confirmed with the results of particle-in-cell and hybrid-code simulations. The present paper thus provides a justification for making use of the velocity moment-based quasi-linear theory as an efficient first-cut theoretical tool for the PC instability. 
    more » « less
  3. ABSTRACT This paper formulates a velocity moment-based quasi-linear theory that combines the impacts of weakly unstable proton–cyclotron- (or, equivalently, electromagnetic ion cyclotron) and proton-mirror instabilities on the solar wind plasma initially characterized by an excessive perpendicular proton temperature anisotropy. The present formalism is an alternative to the existing model in that the weakly unstable modes are characterized by analytical formalism that involves the assumption of weak growth rate and/or fluid-theoretical dispersion relation, in place of numerical root-finding method based on the transcendental plasma dispersion function. This results in an efficient numerical platform for analyzing the quasi-linear development of the said instabilities. Such a formalism may be useful in the larger context of global solar wind modelling effort where an efficient calculation of self-consistent wave–particle interaction process is called for. A direct comparison with spacecraft observations of solar wind proton data distribution shows that the present weak growth rate formalism of quasi-linear calculation produces results that are consistent with the observation. 
    more » « less
  4. Abstract The stability of a realistic multicomponent pickup ion (PUI) velocity distribution derived from a global model of neutral atoms in the heliosphere, which treats hydrogen and helium atoms self-consistently and includes equations for electrons and helium ions, is investigated using linear instability analysis and hybrid simulations. Linear instability analysis shows that the excited oblique mirror waves and the parallel/quasi-parallel Alfvén-cyclotron (AC) waves have lower growth rates than those obtained previously by A. Mousavi et al. for the PUI velocity distributions given by J. Heerikhuisen et al. The PUI scattering by each of the two modes alone is studied. In contrast to the previous investigations, our current simulations using the updated realistic distributions indicate that mirror waves alone do not effectively scatter PUIs in pitch angle. Instead, they primarily contribute to reducing the thermal spread anisotropy of the PUIs originating from the neutral solar wind. The unstable AC waves exhibit lower growth rates but higher saturation levels than the mirror waves. Two-dimensional (2D) simulation results show that when all unstable waves are present, the predominant contributor to the fluctuating magnetic field energy is the AC mode. The AC waves quickly scatter the PUIs with pitch angles away from 90toward isotropy, while the PUIs near 90pitch angle maintain a degree of anisotropy within our simulation timeframe. Moreover, several 1D and 2D hybrid simulations with different numbers of particles per cell are performed to examine the impact of numerical noise on PUI scattering. Finally, the implications of these results for the Interstellar Boundary Explorer energetic neutral atom ribbon are discussed. 
    more » « less
  5. Abstract The magnetospheres of the Earth and other magnetized planets are replete with high‐frequency fluctuations, which are sometimes accompanied by multiple‐harmonic electron cyclotron waves, and lower frequency waves of the whistler‐mode type. Such waves are presumed to be excited by energetic electrons trapped in the dipolar magnetic field, the so‐called loss‐cone electrons, the electron ring distribution being a highly idealized example. The present paper investigates the stability of electron ring distribution with respect to the excitation of quasi‐electrostatic upper‐hybrid wave instability as well as the quasi‐electromagnetic whistler mode instability that operates near electron cyclotron frequency. By employing a two‐dimensional particle‐in‐cell numerical simulation, it is demonstrated that the relatively early dynamics is dominated by the upper‐hybrid wave instability, but over a longer time period it is the whistler mode instability that ultimately determines the final relaxed state. The simulation results are interpreted with the quasilinear theoretical framework. 
    more » « less