skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental N and P additions relieve stoichiometric constraints on organic matter flows through five stream food webs
Abstract Human activities have dramatically altered global patterns of nitrogen (N) and phosphorus (P) availability. This pervasive nutrient pollution is changing basal resource quality in food webs, thereby affecting rates of biological productivity and the pathways of energy and material flow to higher trophic levels.Here, we investigate how the stoichiometric quality of basal resources modulates patterns of material flow through food webs by characterizing the effects of experimental N and P enrichment on the trophic basis of macroinvertebrate production and flows of dominant food resources to consumers in five detritus‐based stream food webs.After a pre‐treatment year, each stream received N and P at different concentrations for 2 years, resulting in a unique dissolved N:P ratio (target range from 128:1 to 2:1) for each stream. We combined estimates of secondary production and gut contents analysis to calculate rates of material flow from basal resources to macroinvertebrate consumers in all five streams, during all 3 years of study.Nutrient enrichment resulted in a 1.5× increase in basal resource flows to primary consumers, with the greatest increases from biofilms and wood. Flows of most basal resources were negatively related to resource C:P, indicating widespread P limitation in these detritus‐based food webs. Nutrient enrichment resulted in a greater proportion of leaf litter, the dominant resource flow‐pathway, being consumed by macroinvertebrates, with that proportion increasing with decreasing leaf litter C:P. However, the increase in efficiency with which basal resources were channelled into metazoan food webs was not propagated to macroinvertebrate predators, as flows of prey did not systematically increase following enrichment and were unrelated to basal resource flows.This study suggests that ongoing global increases in N and P supply will increase organic matter flows to metazoan food webs in detritus‐based ecosystems by reducing stoichiometric constraints at basal trophic levels. However, the extent to which those flows are propagated to the highest trophic levels likely depends on responses of individual prey taxa and their relative susceptibility to predation.  more » « less
Award ID(s):
1637522
PAR ID:
10458243
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
89
Issue:
6
ISSN:
0021-8790
Page Range / eLocation ID:
p. 1468-1481
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Increases in nitrogen (N) and phosphorus (P) availability are changing animal communities, partly by altering stoichiometric imbalances between consumers and their food. Testing relationships between resource stoichiometry and consumer assemblage structure requires ecosystem‐level manipulations that have been lacking to date.We analysed patterns of macroinvertebrate community composition in five detritus‐based headwater streams subject to experimental whole‐stream N and P additions that spanned a steep gradient in dissolved N:P ratio (2:1, 8:1, 16:1, 32:1, 128:1) over 2 years, following a 1‐year pre‐treatment period.We predicted that shifts in leaf litter stoichiometry would drive overall patterns of community composition via greater responses of shredders to enrichment than other taxa, as shredders dominate primary consumer biomass and experience larger consumer–resource elemental imbalances than other functional groups in stream ecosystems. Specifically, we expected litter C:P to be a significant predictor of shredder biomass given the greater relative imbalances between shredder and litter C:P than C:N. Finally, we tested whether shredder responses to enrichment were related to other taxon‐level traits, including body size and stoichiometry, larval life span and growth rate.Whole‐community composition shifted similarly across the five streams after enrichment, largely driven by increased shredder and predator biomass. These shifts were limited to the autumn/winter seasons and related to decreased leaf litter C:P, highlighting important links between the quality of seasonal litter subsidies and community phenology.Among 10 taxa that drove structural shifts, two declined while other taxa from the same functional/taxonomic groups responded positively, suggesting that specific life‐history traits may determine sensitivity to enrichment.Increases in total shredder biomass, and in biomass of several common shredders, were associated with lower litter C:P. Body C:P did not predict shredder response to enrichment. However, weak negative relationships between shredder response and body size, and larval life span, suggest that small‐bodied and short‐lived taxa may be more responsive to shifting resource stoichiometry.Moderate anthropogenic increases in N and P availability affect resource stoichiometry and can alter animal communities, influencing additional food web and ecosystem properties. We provide support for ecological stoichiometry as a framework for predicting such outcomes based on changes in the elemental composition of resource pools. Aplain language summaryis available for this article. 
    more » « less
  2. Abstract Food webs are complex ecological networks that reveal species interactions and energy flow in ecosystems. Prevailing ecological knowledge on forested streams suggests that their food webs are based on allochthonous carbon, driven by a constant supply of organic matter from adjacent vegetation and limited primary production due to low light conditions. Extreme climatic disturbances can disrupt these natural ecosystem dynamics by altering resource availability, which leads to changes in food web structure and functioning. Here, we quantify the response of stream food webs to two major hurricanes (Irma and María, Category 5 and 4, respectively) that struck Puerto Rico in September 2017. Within two tropical forested streams (first and second order), we collected ecosystem and food web data 6 months prior to the hurricanes and 2, 9, and 18 months afterward. We assessed the structural (e.g., canopy) and hydrological (e.g., discharge) characteristics of the ecosystem and monitored changes in basal resources (i.e., algae, biofilm, and leaf litter), consumers (e.g., aquatic invertebrates, riparian consumers), and applied Layman's community‐wide metrics using the isotopic composition of13C and15N. Continuous stream discharge measurements indicated that the hurricanes did not cause an extreme hydrological event. However, the sixfold increase in canopy openness and associated changes in litter input appeared to trigger an increase in primary production. These food webs were primarily based on terrestrially derived carbon before the hurricanes, but most taxa (includingAtyaandXiphocarisshrimp, the consumers with highest biomass) shifted their food source to autochthonous carbon within 2 months of the hurricanes. We also found evidence that the hurricanes dramatically altered the structure of the food web, resulting in shorter (i.e., smaller food‐chain length), narrower (i.e., lower diversity of carbon sources) food webs, as well as increased trophic species packing. This study demonstrates how hurricane disturbance can alter stream food webs, changing the trophic base from allochthonous to autochthonous resources via changes in the physical environment (i.e., canopy defoliation). As hurricanes become more frequent and severe due to climate change, our findings greatly contribute to our understanding of the mechanisms that maintain forested stream trophic interactions amidst global change. 
    more » « less
  3. Abstract Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited.The top aquatic predator in southern California streams is nativeOncorhynchus mykiss, the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances.Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools.Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa.Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance.These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change. 
    more » « less
  4. Abstract The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering. 
    more » « less
  5. Abstract Climate warming is predicted to alter routing and flows of energy through food webs because of the critical and varied effects of temperature on physiological rates, community structure, and trophic dynamics. Few studies, however, have experimentally assessed the net effect of warming on energy flux and food web dynamics in natural intact communities. Here, we test how warming affects energy flux and the trophic basis of production in a natural invertebrate food web by experimentally heating a stream reach in southwest Iceland by ~4°C for 2 yr and comparing its response to an unheated reference stream. Previous results from this experiment showed that warming led to shifts in the structure of the invertebrate assemblage, with estimated increases in total metabolic demand but no change in annual secondary production. We hypothesized that elevated metabolic demand and invariant secondary production would combine to increase total consumption of organic matter in the food web, if diet composition did not change appreciably with warming. Dietary composition of primary consumers indeed varied little between streams and among years, with gut contents primarily consisting of diatoms (72.9%) and amorphous detritus (19.5%). Diatoms dominated the trophic basis of production of primary consumers in both study streams, contributing 79–86% to secondary production. Although warming increased the flux of filamentous algae within the food web, total resource consumption did not increase as predicted. The neutral net effect of warming on total energy flow through the food web was a result of taxon‐level variation in responses to warming, a neutral effect on total invertebrate production, and strong trophic redundancy within the invertebrate assemblage. Thus, food webs characterized by a high degree of trophic redundancy may be more resistant to the effects of climate warming than those with more diverse and specialized consumers. 
    more » « less