skip to main content


Title: Deciphering late Devonian–early Carboniferous P–T–t path of mylonitized garnet‐mica schists from Prins Karls Forland, Svalbard
Abstract

Quartz‐in‐garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which theP–Tconditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. TheP–Tresults are coupled with in‐situ Th–U‐total Pb monazite dating, which records amphibolite facies metamorphism atc.359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.

 
more » « less
Award ID(s):
1447468
NSF-PAR ID:
10458245
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Metamorphic Geology
Volume:
38
Issue:
5
ISSN:
0263-4929
Page Range / eLocation ID:
p. 471-493
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Deformation in crustal-scale shear zones occurs over a range of pressure-temperature-time (P-T-t) conditions, both because they may be vertically extensive structures that simultaneously affect material from the lower crust to the surface, and because the conditions at which any specific volume of rock is deformed evolve over time, as that material is advected by fault activity. Extracting such P-T-t records is challenging, because structures may be overprinted by progressive deformation. In addition, granitic rocks, in particular, may lack syn-kinematic mineral assemblages amenable to traditional metamorphic petrology and petrochronology. We overcome these challenges by studying the normal-sense Simplon Shear Zone (SSZ) in the central Alps, where strain localization in the exhuming footwall caused progressive narrowing of the shear zone, resulting in a zonation from high-T shearing preserved far into the footwall, to low-T shearing adjacent to the hanging wall. The Ti-in-quartz and Si-in-phengite thermobarometers yield deformation P-T conditions, as both were reset syn-kinematically, and although the sheared metagranites lack typical petrochronometers, we estimate the timing of deformation by comparing our calculated deformation temperatures to published thermochronological ages. The exposed SSZ footwall preserves evidence for retrograde deformation during exhumation, from just below amphibolite-facies conditions (∼490°C, 6.7 kbar) at ∼24.5 Ma, to lower greenschist-facies conditions (∼305°C, 1.5 kbar) at ∼11.5 Ma, with subsequent slip taken up by brittle faulting. Our estimates fall within the P-T-t brackets provided by independent constraints on the maximum and minimum conditions of retrograde ductile deformation, and compare reasonably well to alternative approaches for estimating P-T. 
    more » « less
  2. Abstract

    The Pamir gneiss domes represent the most extensive exposure of mid to lower crustal rocks in the Himalayan‐Tibetan orogen north of the India‐Asia suture zone. Unlike other domes in the Central and Southern Pamir, the Muztaghata dome stands out due to its higher metamorphic grade, more complex structural elements, and variable timing of metamorphism. In order to unravel the P‐T‐t history of the Muztaghata dome and better constrain the timing of peak metamorphism, we applied petrologic modeling in concert with geochronology to samples from the structure. The Muztaghata gneiss dome is composed of a structurally higher metapelite‐dominated terrane in the west and a structurally lower orthogneiss terrane in the east. Our results from the western terrane indicate high‐pressure eclogite facies peak conditions of ~800°C/22 kbar at ~25–20 Ma. Zircon grains from metapelitic samples from the western terrane also yield Early Jurassic metamorphic U‐Pb ages with REE signals that indicate coeval garnet growth. Our results from the eastern terrane record high‐pressure amphibolite facies peak conditions of ~650°C/14 kbar at ~24–20 Ma, noticeably lower than the structurally higher western terrane indicating structural juxtaposition during Miocene exhumation. Peak metamorphic conditions from the eastern terrane indicate depths below the current Moho, supporting the interpretation that the Early Miocene Pamir crust was thicker than present. This was followed by rapid exhumation from depths of ~75–80 km and partial westward collapse of the Pamir after 20 Ma, possibly driven in part by regional lithospheric delamination.

     
    more » « less
  3. Abstract

    In subduction‐related tectonic mélange, thermobarometry on individual blocks can in principle constrain the scale of lithological mixing along the subduction interface. Previous thermobarometric investigation of the tectonic amphibolite facies mélange unit in the Catalina Schist, Santa Catalina Island, California, USA, has suggested relatively limited mixing among blocks (≤12 km). Here we further investigate scales of mixing among metamorphically disparate (‘exotic’) blocks within epidote‐amphibolite and lawsonite‐blueschist facies mélange of the Catalina Schist using field and petrographic observations, Zr‐in‐rutile thermometry, and quartz‐in‐garnet elastic barometry. A new statistically based method is presented for calculating elastic barometry maximum pressures. The exotic blocks record peak metamorphic temperatures between 580 and 735°C and peak pressures between 1.16 and 1.65 GPa. Temperatures primarily fall in between those recorded by rocks in the amphibolite facies and epidote amphibolite facies units (643–735°C and 553–596°C respectively). The pressure estimates encompass those recorded by blocks from the amphibolite facies mélange (1.34–1.44 GPa), although the exotic blocks record a much larger range of pressures. The large range of recorded temperatures and pressures suggests that blocks within the epidote amphibolite unit were sourced from and mixed along a 20–30 km region of the subduction interface while an exotic block from the lawsonite blueschist facies unit appears to have been sourced from at least 70 km deeper than the unit it is hosted in. Metre‐ to kilometre‐scale variations in matrix mineral rheology likely control strain partitioning at the interface and permit differential transport of mélange blocks over variable length scales.

     
    more » « less
  4. Abstract

    Pressure‐temperature (P‐T) conditions and high‐resolution paths from 11 garnet‐bearing rocks collected across Himalayan fault systems exposed along the Bhagirathi River (Uttarakhand, NW India) reveal the tectonic conditions responsible for their growth. A garnet from the Tethyan metasedimentary unit has a 50.3 ± 0.6 Ma (Th‐Pb, ±1σ) monazite inclusion, suggesting that ductile mid‐crustal metamorphism occurred synchronously or soon after (<10 Myr) India‐Asia collision, depending on timing. High‐resolution garnet P‐T paths from the same rock show ∼1 kbar fluctuations in P as T increases over a ∼20°C interval, consistent with a period of erosion. We report garnets from the Main Central Thrust (MCT) hanging wall that have Eocene to Miocene monazite ages, and one garnet yields paths consistent with motion along the Main Himalayan Thrust (MHT) décollement. Most high‐resolution MCT footwall P‐T paths fluctuate in P (±1 kbar) as T increases, consistent with imbrication and paths from equivalent structural assemblages in central Nepal. Like those rocks, MCT footwall (Lesser Himalayan Formation, LHF) monazite ages are Early Miocene (9.3 ± 0.6 Ma) to Pliocene (3.0 ± 0.2 Ma). The results demonstrate the consistency in timing and conditions across the MCT at locations ∼650 km apart. If the present‐day Himalayan tectonic framework has not significantly changed since the Pliocene, the LHF duplex can be considered when attributing seismic events to particular faults. The MHT is undisputedly the significant factor in accommodating Himalayan seismic activity, but MCT footwall faults may explain some shallower hypocenters, without the need for unusual MHT geometries.

     
    more » « less
  5. Abstract

    New phase equilibrium modelling, combined with U–Th/Pb petrochronology on monazite and xenotime, and40Ar/39Ar geochronology on white mica, reveal the style of deformation and metamorphism near the southern tip of the extruded Himalayan metamorphic core (HMC). In the Jajarkot klippe, west Nepal foreland, greenschist to lower amphibolite facies metamorphism is entirely constrained to the Cenozoic Himalayan orogeny, in contrast with findings from other foreland klippen in the central Himalaya. HMC rocks exposed in the Jajarkot klippe yield short‐lived, hairpin pressure–temperature–time–deformation paths that peaked at 550–600°C and 750–1,200 MPa at 25 Ma. The Main Central thrust (MCT) and the South Tibetan detachment (STD) bound the base and the top of the HMC, respectively, and were active simultaneously for at least part of their deformation history. The STD was active atc. 27–26 Ma and possibly as late asc. 19 Ma, while the MCT may have been active as early as 27 Ma and was still active atc. 22 Ma. The tectonometamorphic conditions in the Jajarkot klippe are characteristic of crustal thickening and footwall accretion of new material at the tip of the extruding metamorphic orogenic core. Our new results reveal that collisional processes active in the middle to late Miocene at the base of the HMC now exposed in the hinterland were also active earlier, during the Oligocene, at the tip of the southward‐extruding middle crust.

     
    more » « less