skip to main content


Title: An Asymmetric Iron‐Based Redox‐Active System for Electrochemical Separation of Ions in Aqueous Media
Abstract

Electrochemically mediated redox‐active processes are gaining momentum as a promising liquid‐phase separation technology. Compared to conventional systems, they offer potential benefits, such as smaller energy footprints, nondestructive operation, reversibility, and tunability for specific analyte removal, with clear applications to societal and industrial challenges like water treatment and chemical synthesis. An asymmetric Faradaic cell heterogeneously functionalized with a metallopolymer at the anode and a hexacyanoferrate material at the cathode is presented for the first time. The redox‐active species' iron centers enhance the electrosorption of heavy metal oxyanions with up to 98% removal in the ppb range, and offer tunable operating windows as low as ≈0.1 V at ≈1 A m−2. By avoiding water splitting, the hexacyanoferrate cathode imparts additional advantages, namely a four‐fold reduction in adsorption energy requirements, full suppression of solution pH increase, and the ability to capture redox‐active catalytic anions such as polyoxometalates without altering their bulk oxidation state. This hybrid framework of a polymeric ferrocene anode and crystalline hexacyanoferrate cathode allows for simultaneous and synergistic uptake of anions and cations, respectively, creating a new asymmetric scheme for water‐based separations, with foreseeable future extension to fields such as ion‐sensing, energy storage, and electrocatalysis.

 
more » « less
NSF-PAR ID:
10458269
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
30
Issue:
15
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Advanced redox‐polymer materials offer a powerful platform for integrating electroseparations and electrocatalysis, especially for water purification and environmental remediation applications. The selective capture and remediation of trivalent arsenic (As(III)) is a central challenge for water purification due to its high toxicity and difficulty to remove at ultra‐dilute concentrations. Current methods present low ion selectivity, and require multistep processes to transform arsenic to the less harmful As(V) state. The tandem selective capture and conversion of As(III) to As(V) is achieved using an asymmetric design of two redox‐active polymers, poly(vinyl)ferrocene (PVF) and poly‐TEMPO‐methacrylate (PTMA). During capture, PVF selectively removes As(III) with exceptional uptake (>100 mg As/g adsorbent), and during release, synergistic electrocatalytic oxidation of As(III) to As(V) with >90% efficiency can be achieved by PTMA, a radical‐based redox polymer. The system demonstrates >90% removal efficiencies with real wastewater and concentrations of arsenic as low as 10 ppb. By integrating electron‐transfer through the judicious design of asymmetric redox‐materials, an order‐of‐magnitude energy efficiency increase can be achieved compared to non‐faradaic, carbon‐based materials. The study demonstrates for the first time the effectiveness of asymmetric redox‐active polymers for integrated reactive separations and electrochemically mediated process intensification for environmental remediation.

     
    more » « less
  2. Abstract

    Molecular design of redox‐materials provides a promising technique for tuning physicochemical properties which are critical for selective separations and environmental remediation. Here, the structural tuning of redox‐copolymers, 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TMA) and 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidine (TMPMA), denoted as P(TMAxco‐TMPMA1−x), is investigated for the selective separation of anion contaminants ranging from perfluorinated substances to halogenated aromatic compounds. The amine functional groups provide high affinity toward anionic functionalities, while the redox‐active nitroxyl radical groups promote electrochemically‐controlled capture and release. Controlling the ratio of amines to nitroxyl radicals provides a pathway for tuning the redox‐activity, hydrophobicity, and binding affinity of the copolymer, to synergistically enhance adsorption and regeneration. P(TMAxco‐TMPMA1−x) removes a model perfluorinated compound (perfluorooctanoic acid (PFOA)) with a high uptake capacity (>1000 mg g−1) and separation factors (500 vs chloride), and demonstrates exceptional removal efficiencies in diverse per‐ and polyfluoroalkyl substances (PFAS) and halogenated aromatic compounds, in various water matrices. Integration with a boron‐doped diamond electrode allows for tandem separation and destruction of pollutants within the same electrochemical cell, enabling the energy integration of the separation step with the catalytic degradation step. The study demonstrates for the first time the tuning of redox‐copolymers for selective remediation of organic anions, and integration with an advanced electrochemical oxidation process for energy‐efficient water purification.

     
    more » « less
  3. Abstract

    Iron ion batteries using Fe2+as a charge carrier have yet to be widely explored, and they lack high‐performing Fe2+hosting cathode materials to couple with the iron metal anode. Here, it is demonstrated that VOPO4∙2H2O can reversibly host Fe2+with a high specific capacity of 100 mAh g−1and stable cycling performance, where 68% of the initial capacity is retained over 800 cycles. In sharp contrast, VOPO4∙2H2O's capacity of hosting Zn2+fades precipitously over tens of cycles. VOPO4∙2H2O stores Fe2+with a unique mechanism, where upon contacting the electrolyte by the VOPO4∙2H2O electrode, Fe2+ions from the electrolyte get oxidized to Fe3+ions that are inserted and trapped in the VOPO4∙2H2O structure in an electroless redox reaction. The trapped Fe3+ions, thus, bolt the layered structure of VOPO4∙2H2O, which prevents it from dissolution into the electrolyte during (de)insertion of Fe2+. The findings offer a new strategy to use a redox‐active ion charge carrier to stabilize the layered electrode materials.

     
    more » « less
  4. Abstract

    Most reported cathodes of nonaqueous dual‐ion batteries (DIBs) host anions via insertion reactions. It is necessary to explore new cathode chemistry to increase the battery energy density. To date, transition metals have yet to be investigated for nonaqueous DIBs, albeit they may offer high capacity in anodic conversion reactions. Here, we report that bulk copper powder exhibits a high reversible capacity of 762 mAh g−1at 3.2 V vs. Li+/Li and relatively stable cycling in common organic electrolytes. The operation of the copper electrode is coupled with the transfer of anion charge carriers. An anion exchange membrane separator is employed to prevent Cu2+from crossing from the catholyte to the anode side. We designed an unbalanced electrolyte with a more concentrated anolyte than a catholyte. This addresses the concentration overpotential ensued during charge and facilitates the high specific capacity and enhanced reversibility. This finding provides a promising direction for high‐energy DIBs.

     
    more » « less
  5. Abstract

    Most reported cathodes of nonaqueous dual‐ion batteries (DIBs) host anions via insertion reactions. It is necessary to explore new cathode chemistry to increase the battery energy density. To date, transition metals have yet to be investigated for nonaqueous DIBs, albeit they may offer high capacity in anodic conversion reactions. Here, we report that bulk copper powder exhibits a high reversible capacity of 762 mAh g−1at 3.2 V vs. Li+/Li and relatively stable cycling in common organic electrolytes. The operation of the copper electrode is coupled with the transfer of anion charge carriers. An anion exchange membrane separator is employed to prevent Cu2+from crossing from the catholyte to the anode side. We designed an unbalanced electrolyte with a more concentrated anolyte than a catholyte. This addresses the concentration overpotential ensued during charge and facilitates the high specific capacity and enhanced reversibility. This finding provides a promising direction for high‐energy DIBs.

     
    more » « less