skip to main content


Title: Asymmetric Redox‐Polymer Interfaces for Electrochemical Reactive Separations: Synergistic Capture and Conversion of Arsenic
Abstract

Advanced redox‐polymer materials offer a powerful platform for integrating electroseparations and electrocatalysis, especially for water purification and environmental remediation applications. The selective capture and remediation of trivalent arsenic (As(III)) is a central challenge for water purification due to its high toxicity and difficulty to remove at ultra‐dilute concentrations. Current methods present low ion selectivity, and require multistep processes to transform arsenic to the less harmful As(V) state. The tandem selective capture and conversion of As(III) to As(V) is achieved using an asymmetric design of two redox‐active polymers, poly(vinyl)ferrocene (PVF) and poly‐TEMPO‐methacrylate (PTMA). During capture, PVF selectively removes As(III) with exceptional uptake (>100 mg As/g adsorbent), and during release, synergistic electrocatalytic oxidation of As(III) to As(V) with >90% efficiency can be achieved by PTMA, a radical‐based redox polymer. The system demonstrates >90% removal efficiencies with real wastewater and concentrations of arsenic as low as 10 ppb. By integrating electron‐transfer through the judicious design of asymmetric redox‐materials, an order‐of‐magnitude energy efficiency increase can be achieved compared to non‐faradaic, carbon‐based materials. The study demonstrates for the first time the effectiveness of asymmetric redox‐active polymers for integrated reactive separations and electrochemically mediated process intensification for environmental remediation.

 
more » « less
Award ID(s):
1931941
NSF-PAR ID:
10458789
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
6
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl‐methacrylate) (PTMA) redox polymer–based nano‐objects are synthesized by polymerization‐induced self‐assembly with poly[oligo(ethylene glycol) methyl ether methacrylate] and poly[(4‐methacryloyloxy)‐2,2,6,6‐tetramethylpiperidinium chloride] as hydrophilic macro‐chain transfer agents. These hydrophilic blocks are used in order to stabilize hydrophobic PTMA blocks in aqueous medium. The accordingly obtained spherical nano‐objects are observed via transmission electron microscopy analysis. Cyclic voltammetry measurements indicate that the nature and the length of coronal blocks influence the redox process of the PTMA core blocks. Moreover, these electroactive nano‐objects display low viscosities with a shear‐thinning behavior, making them suitable as cathode‐active materials for aqueous flow‐assisted electrochemical systems.

     
    more » « less
  2. Ferrocene (Fc)/ferrocenium (Fc+)-decorated carbon nanotube electrode materials have shown promise for selectively adsorbing arsenic (As) over dissimilar anions like Cl– and ClO4–, and isostructural transition-metal oxyanions for water remediation; however, the competition between same-group oxyanions (such as arsenate vs phosphate) is underexplored and poorly understood. We use ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to Fc/Fc+ with and without functional substitutions (OH, SH, NH2, COOH, CH3, C2H5, NO2, and Cl). This work aims to understand factors that induce the selective binding of toxic arsenic over phosphate. We find that neat Fc cannot distinguish the three oxyanions because physical forces (electrostatics and dispersion) dominate the Fc-oxyanion interactions. However, combined oxidation and substitution effects enable selectivity for As(V) over P(V). Oxidation of Fc to Fc+ allows the formation of Fc+-oxyanion covalent bonds with varying donor–acceptor character depending on the oxyanion. Additionally, NH2 and SH groups that donate charge to the base Fc+ molecule and H-bond to oxyanion induce an energetic preference for As(V) over P(V) by −0.23 and −0.13 eV, respectively. Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) over the other anions. Using the calculated energetics, we predict the pH-dependent binding selectivity of functionalized ferrocenium. These findings demonstrate the challenges of Fc/Fc+-oxyanion interaction for selective binding and provide a path for identifying other molecules and substituents for efficient metallocene adsorbent design. 
    more » « less
  3. Abstract

    Molecular design of redox‐materials provides a promising technique for tuning physicochemical properties which are critical for selective separations and environmental remediation. Here, the structural tuning of redox‐copolymers, 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TMA) and 4‐methacryloyloxy‐2,2,6,6‐tetramethylpiperidine (TMPMA), denoted as P(TMAxco‐TMPMA1−x), is investigated for the selective separation of anion contaminants ranging from perfluorinated substances to halogenated aromatic compounds. The amine functional groups provide high affinity toward anionic functionalities, while the redox‐active nitroxyl radical groups promote electrochemically‐controlled capture and release. Controlling the ratio of amines to nitroxyl radicals provides a pathway for tuning the redox‐activity, hydrophobicity, and binding affinity of the copolymer, to synergistically enhance adsorption and regeneration. P(TMAxco‐TMPMA1−x) removes a model perfluorinated compound (perfluorooctanoic acid (PFOA)) with a high uptake capacity (>1000 mg g−1) and separation factors (500 vs chloride), and demonstrates exceptional removal efficiencies in diverse per‐ and polyfluoroalkyl substances (PFAS) and halogenated aromatic compounds, in various water matrices. Integration with a boron‐doped diamond electrode allows for tandem separation and destruction of pollutants within the same electrochemical cell, enabling the energy integration of the separation step with the catalytic degradation step. The study demonstrates for the first time the tuning of redox‐copolymers for selective remediation of organic anions, and integration with an advanced electrochemical oxidation process for energy‐efficient water purification.

     
    more » « less
  4. null (Ed.)
    The oxidation of highly toxic arsenite (As(III)) was studied using humic acid-coated magnetite nanoparticles (HA-MNP) as a photosensitizer. Detailed characterization of the HA-MNP was carried out before and after the photoinduced treatment of As(III) species. Upon irradiation of HA-MNP with 350 nm light, a portion of the As(III) species was oxidized to arsenate (As(V)) and was nearly quantitatively removed from the aqueous solution. The separation of As(III) from the aqueous solution is primarily driven by the strong adsorption of As(III) onto the HA-MNP. As(III) removals of 40–90% were achieved within 60 min depending on the amount of HA-MNP. The generation of reactive oxygen species (•OH and 1O2) and the triplet excited state of HA-MNP (3HA-MNP*) was monitored and quantified during HA-MNP photolysis. The results indicate 3HA-MNP* and/or singlet oxygen (1O2) depending on the reaction conditions are responsible for converting As(III) to less toxic As(V). The formation of 3HA-MNP* was quantified using the electron transfer probe 2,4,6-trimethylphenol (TMP). The formation rate of 3HA-MNP* was 8.0 ± 0.6 × 10−9 M s−1 at the TMP concentration of 50 µM and HA-MNP concentration of 1.0 g L−1. The easy preparation, capacity for triplet excited state and singlet oxygen production, and magnetic separation suggest HA-MNP has potential to be a photosensitizer for the remediation of arsenic (As) and other pollutants susceptible to advanced oxidation. 
    more » « less
  5. Fe3+-cross-linked chitosan exhibits the potential for selectively adsorbing arsenic (As) over competing species, such as phosphate, for water remediation. However, the effective binding mechanisms, bond nature, and controlling factor(s) of the selectivity are poorly understood. This study employs ab initio calculations to examine the competitive binding of As(V), P(V), and As(III) to neat chitosan and Fe3+-chitosan. Neat chitosan fails to selectively bind As oxyanions, as all three oxyanions bind similarly via weak hydrogen bonds with preferences of P(V) = As(V) > As(III). Conversely, Fe3+-chitosan selectively binds As(V) over As(III) and P(V) with binding energies of −1.9, −1, and −1.8 eV for As(V), As(III), and P(V), respectively. The preferences are due to varying Fe3+–oxyanion donor–acceptor characteristics, forming covalent bonds with distinct strengths (Fe–O bond ICOHP values: – 4.9 eV/bond for As(V), – 4.7 eV/bond for P(V), and −3.5 eV/bond for As(III)). Differences in pKa between As(V)/P(V) and As(III) preclude any preference for As(III) under typical environmental pH conditions. Furthermore, our calculations suggest that the binding selectivity of Fe3+-chitosan exhibits a pH dependence. These findings enhance our understanding of the Fe3+–oxyanion interaction crucial for preferential oxyanion binding using Fe3+-chitosan and provide a lens for further exploration into alternative transition-metal–chitosan combinations and coordination chemistries for applications in selective separations. 
    more » « less